Table of Contents

CHAPTER 1 The Year in Review 06

CHAPTER 2 Research Highlights 10

Condensed Matter Science 12
Graphene, Kondo/heavy fermion systems, magnetism & magnetic materials, molecular conductors, qubits & quantum entanglement, semiconductors, basic superconductivity, and other condensed matter

Magnets & Materials 34
Engineering materials, magnet technology, and applied superconductivity

Chemistry 39
Chemistry, geochemistry, and magnetic resonance technique development

Life Sciences 49
Biochemistry and biology

CHAPTER 3 User Facilities 57

CHAPTER 4 Magnets & Materials 82
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>User Collaboration Grants Program</td>
<td>102</td>
</tr>
<tr>
<td>6</td>
<td>Education</td>
<td>105</td>
</tr>
<tr>
<td>7</td>
<td>Industrial Partners and Collaborations</td>
<td>111</td>
</tr>
<tr>
<td>8</td>
<td>Conferences & Workshops</td>
<td>117</td>
</tr>
<tr>
<td>9</td>
<td>Management & Administration</td>
<td>119</td>
</tr>
<tr>
<td>10</td>
<td>Science & Research Productivity</td>
<td>126</td>
</tr>
<tr>
<td>A</td>
<td>User Facility Statistics</td>
<td>169</td>
</tr>
<tr>
<td>B</td>
<td>Research Reports by Category</td>
<td>209</td>
</tr>
<tr>
<td>C</td>
<td>Publications & Activities Index</td>
<td>225</td>
</tr>
</tbody>
</table>
2011 a banner year for lab users, infrastructure

2011 was a heck of a year for the MagLab.

This annual report presents 39 highlights selected from 444 research reports — an all-time high. This record number of reports reflects the continued growth of our user community and research productivity, as well as the important role played by high magnetic fields in rapidly expanding areas of research:

• Graphene, model magnetic systems (low-dimensional, frustrated, Bose-Einstein condensed, quantum entangled… the list gets too long for this column), and the ever-since-1987-but-still-a-mystery-yet-now-also-becoming-technologically-important high-temperature superconductors.

• Energy, from petroleum analysis to pollution analysis (Deepwater Horizon and the North Pacific), to a molecular level probing of energy storage technologies.

• Applications of novel resonance techniques that utilize MagLab magnets and probe technologies for not only biochemistry and biomedicine (protein structures, the structure and function of HIV, and the pioneering of sodium MRI and f-MRI), but increasingly in materials (NASA foams and battery materials).

In June, we celebrated the commissioning of the 25 T Split Magnet. The launch of the Split represented a huge triumph for both the team who built it and the staff and users who, almost immediately, began utilizing its suite of capabilities.

With four large ports open at the mid-plane of the magnet where stress and temperatures are highest, the Split required a complete rethinking of resistive magnet technology’s limits. The Split is notable for both what it doesn’t have — namely, 50% of its mid-plane — and for what it does have: direct 180-degree optical access at 25 tesla, and user access to a type of experiment that simply didn’t exist before. With 18,726 individual parts and a half-decade of planning, the Split is the most challenging, complicated resistive magnet project ever developed.

Two months after the commissioning of the Split, and just a month after a major wildfire temporarily shut down Los Alamos, the Pulsed Field Facility reclaimed the world record for a non-destructive

ABOVE: From administrators to students to facilities personnel, all hands were on deck for the installation of long sections of underground pipe as part of the lab’s ongoing effort to improve helium recovery & economy. The project has already resulted in dramatically reduced helium usage. (Photo by Dave Barfield)
pulse with a 97.4 T shot, opening up user research to 95 T and paving the way for 2012’s 100 T milestone. The record was great, but the expanded capability for our users was the goal; in fact, even the record-setting shot contained user experiments. Work conducted in the newly boosted field resulted in user work that has already been published in Proceedings of the National Academy of Sciences, Physical Review Letters and Physical Review B. For a full account of each facility’s user-focused improvements, see Chapter 3 of this report.

Research Reports reflect sustained user community growth

In 2011, 444 research reports were received in 18 categories, representing the life sciences, chemistry, magnet science and technology, and condensed matter physics.

- 20% of the research activities (87 reports) were already published in 2011, many in prominent journals.
- 22 reports were accepted for publication; 42 were submitted for publication; and 173 have manuscripts in preparation.
- In 2011, 81 first-time principal investigators requested magnet time.
- The majority of research projects were funded by the U.S. National Science Foundation, the U.S. Department of Energy, and the U.S. National Institutes of Health. Other funding organizations included: NASA, U.S. Department of Defense, U.S. Air Force Office of Scientific Research, U.S. Army, U.S. Navy, and numerous universities. Research was also supported by science federations, ministries, and universities in countries around the world including: Brazil, Canada, China, Denmark, Germany, Japan, Russia, Slovenia, South Korea, and the United Kingdom.
- The Magnet Lab User Collaboration Grants Program encourages collaborations between internal and external investigators, promotes bold but risky efforts and provides initial seed money for new faculty and enhancements of experimental techniques. This program supported 32 of the 444 research activities and was the primary support for seven projects.

EP2DS-MSS15

In July, the Magnet Lab hosted the 19th International Conference on Electronic Properties of Two-Dimensional Electron Systems and the 15th Conference on Modulated Semiconductor Structures. With two dozen invited speakers and 385 registered attendees, the event offered the chance for attendees from all over the world to share their work and get acquainted with the MagLab.

Honors, awards and promotions

User Committee Chair Jan Musfeldt of UT Knoxville conducted the lab’s first-ever career impact survey in 2011. Jan has been an active and extremely
effective chair, advocating for users and involving users directly in the MagLab’s strategic planning and renewal proposal development.

Kun Yang, a Florida State University professor and member of the Condensed Matter/ Theory group, was elected a Fellow of the American Physical Society for “significant theoretical contributions to our understanding of novel phenomena in Quantum Hall Systems”.

Chris Hendrickson of ICR was named a Florida State University Distinguished University scholar, one of only ten named by the university. The award recognizes outstanding performance by non-tenured or non-tenure-seeking Florida State employees who have longstanding track records of research and/or creative activity at the university and occupy more senior levels in their respective positions.

Lab outreach reaches students, community, educators

With 20 different programs, the Center for Integrating Research and Learning (CIRL) continued its broad, highly successful outreach efforts. CIRL hosted 15 Research Experiences for Undergraduates and 19 Research Experiences for Teachers participants this year, providing the hands-on research opportunities essential for students interested in STEM fields, and for the teachers charged with engaging a new generation of kids in science. Events like SciGirls, MagLab Summer Camps, Science Café, Doing Science Together, and the MagLab annual Open House offered opportunities for community members of all ages to connect with the lab. The MagLab substantially grew its Twitter and Facebook communities and enjoyed a surge in the popularity of its YouTube channel.

Diversity effort makes inroads
While continuing its already varied diversity initiatives, the MagLab sought to advance its diversity initiatives in new ways during 2011. In collaboration with "The Alliance for the Advancement of Florida’s Academic Women in Chemistry and Engineering" (AAFAWCE), an NSF ADVANCE-PAID grant, it organized a workshop on "Faculty Recruitment for Excellence and Diversity" (FRED) to present methods for recruiting to promote excellence and diversity in the workplace. From 2012 onward, FRED will be required for any scientist to serving on a scientific search committee. Dragana Popović, Director of the Magnet Lab’s Diversity Program, became the co-PI on the FSU portion of the AAFAWCE grant, a collaboration of five Florida universities to increase the role of women in STEM fields. She is also co-PI on a recently submitted ADVANCE-IT proposal “Collaborative Research: Advance-IT, Florida!” a collaboration of the same five Florida institutions (FSU, UF, FAMU, USF, FIU) that seeks to institutionalize the initial successes of the original ADVANCE-PAID program. For full information on the lab’s diversity initiatives see Chapter 9 of this report.
CHAPTER 2: RESEARCH HIGHLIGHTS

CHAPTER 2
Research Highlights

This year’s 39 highlights were selected by combing through the annual report’s 444 user and faculty submitted research reports from 18 categories representing the life sciences, chemistry, magnet science and technology and condensed matter science.

The highlight-selection criteria emphasize research that is published, features a new technique for future users, and showcases outstanding research. Together, the highlights span all three Magnet Lab sites and seven user programs. After we receive the reports, the lab’s Science Council, composed of scientists representing all three Magnet Lab sites, reviews each report and narrows the field to a few dozen standouts. That field is then narrowed into a final list by lab Director Greg Boebinger.

The Science Council is made up of Chair Albert Migliori, and members Art Edison, Gail Fanucci, Zhegong Gan, Lev Gor’kov, Stephen Hill, Jurek Krzystek, David Larbalestier, Dragna Popović, Ryan Rodgers, Theo Siegrist, Glenn Walter and Huub Weijers.

The 2011 Science and Engineering Highlights are published as Special Edition of the laboratory’s magazine *Mag Lab Reports*, and are presented in this report as representative of the lab’s broad research portfolio. For more information on the scientific productivity of the Magnet Lab, including presentations and theses, see Chapter 10 of this report.

TABLE OF CONTENTS

10 CONDENSED MATTER SCIENCE

Graphene, Kondo/heavy fermion systems, magnetism & magnetic materials, molecular conductors, qubits & quantum entanglement, semiconductors, basic superconductivity, and other condensed matter

12 Evidence for Skyrmionic Excitations in Graphene
13 Magnetotransport Properties of Quasi-Free-Standing Epitaxial Graphene Bilayer on SiC
14 de Haas-van Alphen Measurements on the Rattling-Induced Superconductor KOs$_2$O$_6$ Using PDF in 35 T
16 Electrolyte Gate-Controlled Kondo Effect in SrTiO$_3$ Using 30 T
17 Microstrain-Sensitivity Magnetostriction of SrCu$_2$(BO$_3$)$_2$ Using 97 T
18 Spin-State Crystallization in LaCoO$_3$ in Magnetic Fields Using 97 T
19 High-Field Magnetization of the 1D CuBr$_2$(pyzO)(H$_2$O)$_2$ and 2D CuBr$_2$(pyz) Using 92 T
20 Magnetic Circular Dichroism (MCD) of Copper Phthalocyanine Crystalline Thin Films Using the 25 T Split Magnet
21 Magnetic Susceptibility Measurements of the Bose-Glass Phase in NiCl$_{1.85}$Br$_{0.15}$-4SC(NH$_2$)$_2$ Down to 1 mK
22 High-Field EPR Studies of a Mononuclear CoII Molecular Magnet
23 High Field Behavior of Kartsovnik-Kajita-Yamaji Resonance Peaks and the Coherence Peak of Quasi-two-dimensional Electrons
24 Strong Electron-Phonon Interactions and Polaronic Effects in Compounds with Transition-Metals-Atoms
25 Coexistence of Magnetism and Two-Dimensional Superconductivity at Oxide Interface Using SCM and Torque Magnetometry
Engineering CMOS-Compatible Quantum Dot Qubits for Local and Non-Local On-Chip Quantum Communication

Time-Resolved Evidence for Superfluorescent Radiation from Quantum Wells in 17.5 T

Anomalous Robustness of the $v = 5/2$ Fractional Quantum Hall Effect Near a Sharp Phase Boundary

Spin Density Wave Near the Vortex Cores of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$

Quantum Oscillations in the Thermoelectric Properties of YBa$_2$Cu$_3$O$_{6.54}$ to 45 T in the Hybrid Magnet

Multiple Quantum Oscillation Frequencies from Nodal Pocket in Underdoped Cuprates to 95 T

Quantum Oscillations in the 111 Iron Pnictide Superconductors: LiFeAs and LiFeP Using 45 T Hybrid Magnet

MAGNETS & MAGNET MATERIALS

Engineering materials, magnet technology, and applied superconductivity

Mechanical Decoupling of ReBCO Coated Conductors in High Field Coils Using Thin-Walled Heat-Shrink Tubing Insulation to Prevent Stress-Induced Damage

Insulation of Coated Conductors for High Field Magnet Applications

Doubled Critical Current Density in Bi-2212 Wires by Reduction of Gas Bubble Density

Critical Current Measurement at 4.2 K Up to 20 T of REBa$_2$Cu$_3$O$_{7.8}$ Coated Conductor Cables Designed for High-Field Magnet Applications

CHEMISTRY

Chemistry, geochemistry, and magnetic resonance technique development

Veraguamides A–G, Novel Cyclic Hexadepsipeptides with Antiproliferative Activity from the Marine Cyanobacterium *Symploca cf. hydnoides* from Guam

High Frequency EPR Study of a Cr(IV)-O-Cr(IV) Dimer Complex

Manipulating the Singlet-Triplet Equilibrium in Organic Biradical Materials

Analysis and Identification of Biomarkers and Origin of Color in a Bright Blue Crude Oil

Radiocarbon Analysis of the Gulf Oil Spill

Ultra Depleted Mantle at the Gakkel Ridge Based on Hafnium and Neodymium Isotopes

Obtaining Isotropic NMR Spectra of Paramagnetic Battery Materials with Large Anisotropic Broadening

MRI of Absorbed Water in Solid Foams Using 21.1 T

LIFE SCIENCES

Biochemistry and biology

Solid-State NMR Structural and Dynamics Studies of HIV-1 Protein Assemblies Using 21 T and Low-E Probe

Structural Analysis of a Recombinant Protein in Native *Escherichia coli* Membranes Using Low-E Probe

Dispersed Disease-Causing Neomorphic Mutations on a Single Protein Promote the Same Localized Conformational Opening

Antibody-Mediated Mechanics on a Membrane-Embedded HIV gp41 Segment by EPR

Tumor Resistance and *in vivo* Sodium MR Imaging at 21.1 T

High Resolution MRI at 21.1 T of the Hippocampus and Temporal Lobe White Matter in the Differential Classification of Alzheimer’s Disease and Diffuse Lewy Body Disorder
Graphene

The fabrication of monolayer graphene on boron-nitride substrates has resulted in an increase of the charge carrier mobility, allowing the authors to observe quantum Hall effects at all integer filling factors. The picture that emerges is one of exchange driven quantum Hall ferromagnetism within the combined spin-valley isospin space. By tuning the Zeeman energy over a wide range, the dependence of the isospin ferromagnetic order on Landau level index N is demonstrated for fixed relative filling. In particular, for $N \neq 0$ at half filling, the experiment finds evidence for Skyrmionic excitations.

- Accepted for publication in *Nature Phys.* (http://www.nature.com/nphys/journal/vaop/ncurrent/pdf/nphys2307.pdf)

Evidence for Skyrmionic Excitations in Graphene

A.F. Young, H. Ren, P. Cadden-Zimansky, P. Kim (Columbia University, Physics); C.R. Dean (Columbia Univ., Electrical Engineering); L. Wang (Columbia Univ., Mechanical Engineering); K. Watanabe, T. Taniguchi (National Institute for Materials Science, Japan)

Introduction

The fabrication of graphene on boron-nitride (BN) has produced an increase in the upper-bound of the carrier mobility possible in unsuspended graphene. This increased mobility enables the SU(4) symmetric Landau levels (LLs) to have their degeneracy lifted at lower fields, and subsequently the spin-activation of these emergent LLs to be characterized using high-field measurements at tilted angles.

Experimental

Our samples are prepared by first mechanically exfoliating graphene and BN onto separate substrates. The exfoliated flakes are separately characterized by optical and AFM measurements and the graphene flakes are then transferred onto BN and re-characterized. Multiple gold probes are subsequently deposited on the graphene using conventional electron beam lithography techniques. Samples that show the most well developed quantum Hall states are measured at the Magnet Lab, where transport measurements at low temperatures and fields as high as 35T are performed.

Results and Discussion

We have observed quantum Hall effects at all integer filling factors in graphene (Figure 1), consistent with exchange-driven quantum Hall ferromagnetism within the combined spin-valley isospin space. Tilted field measurements of the activation gaps associated with the broken symmetry quantum Hall states has allowed us to extract quantitative information about the spin textures of the ground state and its elementary excitations. For the half-filled Landau levels, such as the $\nu = 4$ state, the effective g-factor of the charge carriers can exceed its bare value of 2 (Figure 2). Measurements of multiple samples show a correlation between effective g-factor, measured energy gaps, and sample quality. This correlation suggests that the multiple-spin Skyrmionic excitations that serve as charge carriers in these states are disorder limited, with larger Skyrmions forming as sample quality improves.

REFERENCES

Graphene

The most common structure of the natural graphite crystal is the Bernal (staggered) stacking. This report describes high-field magnetotransport evidence for Bernal stacking in a graphene bilayer grown on SiC. These findings render this system particularly attractive for electronic and optoelectronic device applications.

- Published in Nano Letters 11, 3624-3628 (2011).

Magnetotransport Properties of Quasi-Free-Standing Epitaxial Graphene Bilayer on SiC

K. Lee, S. Kim, M.S. Points, E. Tutuc (Univ. Texas Austin, Electrical and Computer Eng.); T. E. Beechem, T. Ohta (Sandia National Labs)

Introduction

Graphene bilayers in Bernal stacking exhibit a transverse electric field tunable band gap, a property that renders this material attractive for device applications. Here, we investigate magnetotransport properties of quasi-free-standing epitaxial graphene bilayer on SiC.

Experimental

We prepared quasi-free-standing epitaxial graphene bilayer on SiC by atmospheric pressure graphitization in Ar, followed by H2 intercalation. To probe the transport properties of these graphene bilayers, we fabricate top-gated Hall bars. The Hall bar location on the substrate is first chosen using optical and atomic force microscopy (AFM) in order to identify an appropriately wide terrace. Electron beam (e-beam) lithography and O2 plasma etching are used to pattern the Hall bar active area; the graphene is etched outside the Hall bar. Metal contacts are realized using a second e-beam lithography step, followed by a 40 nm Ni deposition and lift-off. For the gate dielectric, 15nm thick Al2O3 film was deposited using atomic layer deposition (ALD). E-beam lithography and then Ni deposition are used to define the top gate. Magnetotransport properties were measured using the DC field facility at the National High Magnetic Field Laboratory.

Results and Discussion

At the charge neutrality point, the longitudinal resistance (ρ_{xx}) shows an insulating behavior (Figure 1a), which follows a temperature (T) dependence consistent with variable range hopping in a gapped state. ρ_{xx} and Hall resistivity (ρ_{xy}) vs. VTG (bottom axis), and carrier density (n) (top axis), measured at $B = 30$ T, and $T = 0.3$ K. Hall conductivity (σ_{xy}) vs. V_{in} (bottom axis) and n (top axis) at $T = 0.3$ K, and different B-field values.

Bernal stacking, rendering this material interesting for electron physics and potential platform for device applications.

Conclusions

We investigated the magnetotransport in quasi-free-standing graphene bilayers on SiC. We observed QHSs at fillings $\nu = 0, 4, 6, 8, 12$, consistent with a Bernal stacked graphene bilayer in the presence of a transverse field.

Acknowledgements

We thank NSF (DMR-0819860) and NRI for support.
Kondo/ Heavy Fermion Systems

The β-pyrochlore osmates AOs₂O₆ (A=Cs, Rb, K) are remarkable for their crystalline structure where small size ions, A, are placed inside large cages formed by the OsO₆ octahedra. The elastic potential for the A- ions moving in the cage is then highly anharmonic. Indeed, normally, the phonon frequencies of lighter ions should be higher; it is different in AOs₂O₆ where, for instance, for A=K the dispersionless Einstein mode is as low as ~20K. Importantly, these low energy modes dubbed the “rattling modes” seem to be responsible for the s-wave phonon driven superconductivity (SC). The highest T_c=9.6K is observed for KOs₂O₆, with the lightest A=K. Thermodynamic and transport data have provided numerous evidences in favor of the strong electron-lattice interactions in these materials. In particular, superconducting characteristics definitely differ from the ones for the weak coupling BCS SC.

The major fact obtained in this report is that the electron-phonon coupling is uncommonly strong in KOs₂O₆. In the de Haas-van Alphen experiments numerous fundamental frequencies were observed, as it seems, in the reasonable agreement with the shapes of the Fermi surfaces found from the band structure calculations. Comparison of the “band” mass and the observed mass extracted by way of the Lifshitz-Kosevich analysis provides the direct measure of the e-ph coupling, λ. For most orbits it was found λ ~6, the value never seen anywhere. (For one orbit, for the frequency ρ the observed mass was 26 times heavier than the free electron mass!)

These results indicate the new type of SC in the β-pyrochlore osmates, AOs₂O₆. Theoretically, there is no clue to how to approach such strong coupling phonon SC. In the famous case of SC in lead, Pb one has λ ~1.

- Accepted for publication as a Rapid Communication in Phys. Rev. B (http://arxiv.org/abs/1201.5425)

de Haas-van Alphen Measurements on the Rattling-Induced Superconductor KOs₂O₆ Using PDF in 35 T

Introduction

The alkali-metal osmium oxides AOs₂O₆ (A = K, Rb, and Cs) crystallize in the cubic β-pyrochlore structure. The A ion is enclosed in an oversized cage formed by OsO₆ octahedra and vibrates in an anharmonic potential with a flat bottom, giving rise to nearly-localized low-energy anharmonic phonon modes, i.e. rattling modes. With reducing the ionic size from Cs to K, the anharmonicity grows and the rattling intensifies. AOs₂O₆ exhibit superconductivity below the transition temperatures of T_c = 9.6, 6.3, and 3.3 K for A = K, Rb, and Cs, respectively. Hiroi and coworkers have found from a detailed comparative study of the three compounds strong evidence that the superconductivity is mediated by the rattling mode. To shed light on the nature of the electron-rattling interaction, we have studied the many-body mass enhancement in KOs₂O₆ via de Haas-van Alphen (dHvA) torque measurements.

Experimental

KO₅Os₂ single crystals were grown at the ISSP. We used a 35 T resistive magnet (cell 8) and the portable dilution refrigerator (PDF) at the NHMFL-Tallahassee. The PDF was essential because of heavy effective masses of electrons. dHvA torque oscillations were detected using piezoresistive microcantilevers.

Results, Discussion, and Conclusions

Figure 1(a) shows an example of magnetic torque in KOs₂O₆. The measurement temperature is 0.05 K. The field-up and field-down sweeps separate at a field between 31 and 32 T, which we identify with B_c. dHvA oscillations are clearly observed and the Fourier transforms indicate sev-
eral fundamental frequencies with their harmonics and combinations (Figure 1b). The inset shows the temperature dependence of the amplitude of the frequency \(\rho \). With increasing temperature, the amplitude rapidly decreases. A Lifshitz-Kosevich fit (solid curve) indicates an associated effective mass of 26 \(m_e \), \(m_e \) being the free electron mass.

We determined effective masses for a total of 17 frequencies at three different field orientations and compared them with band masses. Mass enhancement parameters \(\lambda (=m*/m_{\text{band}}^{-1}) \) are in a range between 5 and 8, consistent with the specific-heat mass enhancement parameter of 6.3. These values are unusually large for electron-lattice coupling. We examined dependence of the estimated \(\lambda \)'s on band (or Fermi surface sheet), orbit, and orientation, in comparison with MgB\(_2\) and LuNi\(_2\)B\(_2\)C, and concluded that the many-body mass enhancement in KOS\(_2\)O\(_6\) is relatively homogeneous, most likely reflecting the local nature of the electron-rattling interaction.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Heavy Electrons” (No. 23102725) of The Ministry of Education, Culture, Sports, Science, and Technology, Japan.

REFERENCES

Kondo/ Heavy Fermion Systems

In this work, published in Physical Review Letters, a method has been developed that enables continuous tuning of the density of high-mobility two-dimensional (2D) electrons formed just underneath the surface of SrTiO$_3$, an insulator well known for its ferroelectricity. The 2D layer of electrons produced by this clean, powerful method exhibits evidence for the Kondo effect involving Ti$^{3+}$ spins.

Electrolyte Gate-Controlled Kondo Effect in SrTiO$_3$ Using 30T

D. Goldhaber-Gordon, M. Y. Lee, J. R. Williams (Stanford Univ., Physics);
Sipei Zhang, C. Dan Frisbie (Univ. of Minnesota, Chemical Engineering and Material Science)

Introduction

A classic correlated material, in which much of the electronic properties are understood, is SrTiO$_3$ (STO) and its related compounds like interfaces between LaAlO$_3$ (LAO) and STO. Recently investigation into transport in high-quality STO and LAO/STO interfaces have shown departures from conventional metallic behavior, including superconductivity and ferromagnetism. Understanding how these phases evolve as a function of density is key to the origin of correlated phenomena in these systems.

Experimental

To investigate the evolution of phases at low density, where STO is an insulator, to high density where the phase is poorly understood, we fabricated Hall bars on STO to investigate the longitudinal and Hall resistance as a function of density (between 0 and 2x1014 cm$^{-2}$), achieved using ionic gating. The experiments were performed in a flow cryostat, with a variable temperature range between 1.4K and 300K in Cell 9, which provides a DC magnetic field up to 31T.

Results, Discussion, and Conclusions

Using the NHMFL, we were able to expand on the body of evidence for Ti$^{3+}$ magnetism in STO that conducts in two dimensions. We demonstrate a gate-controlled Kondo effect in the 2D electron system in undoped STO formed beneath the bare surface by the electric field from an ionic gel electrolyte, and interpret this system as an admixture of magnetic Ti$^{3+}$ ions (unpaired and localized electrons) and delocalized electrons partially filling the Ti 3d conduction band, as predicted theoretically. The Kondo effect is an archetype for the emergent magnetic interactions amongst localized and delocalized electrons in conducting alloys, and the ability to produce and tune the effect by purely electrostatic means in any conducting system is of interest in its own right. The observed appearance of the Kondo effect in STO as a function of applied electric field points to the emergence of magnetic interactions between electrons in STO due to electron-electron correlations rather than the presence of dopants. This work has been published in Physical Review Letters1 and was selected as a Physics Viewpoint2 and as an Editor’s Choice.

ACKNOWLEDGEMENTS

The development of ionic gating technique was supported as part of the Center on Nanostructuring for Efficient Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science Office of Basic Energy Sciences under Award Number DE-SC0001060. The measurement and study of STO were supported by the MURI program of the Army Research Office Grant No. W911-NF-09-1-0398. The Minnesota contribution was supported by the National Science Foundation through the MRSEC program at the University of Minnesota, Award DMR-0819885.

REFERENCES

Magnetism and Magnetic Materials

Investigating the spin dimer system SrCu$_2$(BO$_3$)$_2$ in high magnetic fields brings up a unique opportunity to study the interactions between low energy magnetic excitations $S_z=1$ (triplons) in the presence of strong magnetic frustration in a 2D lattice. The external magnetic field is used to close the spin gap at a field-induced quantum critical point, as well as to control the triplon population density once the gap is closed. Triplon repulsion and frustration-induced localization lead to the emergence of magnetic stripes forming texture that manifests as steps in the magnetization at integer ratios of the saturation magnetization. A significant spin lattice coupling was observed with the first magnetostriction measurements in pulsed fields to 97.4 T. In addition to confirming the known low-field textures, by their effect in the lattice parameter, two new features at magnetic fields of 74 T and 82 T were observed, demonstrating unambiguously that the interplay of magnetic and lattice degrees of freedom can be probed over a large magnetic field range.

Microstrain-Sensitivity Magnetostriction of SrCu$_2$(BO$_3$)$_2$ to 97 T

R. Daou (HLD, Dresden); S. Crooker, A. Uchida, M. Jaime (LANL, NHMFL); F. Weickert (LANL, CMMS); H.A. Dabkowska, B.D. Gaulin (McMaster, Physics)

![Figure 1](image1.png)

FIGURE 1. a. magnetostriction vs field measured in a 50 T mid-pulse (250 ms) magnet at NHMFL-LANL, showing evidence of strong spin-lattice correlations. b. Magnetization vs field showing plateaus at 1/9, 1/4 and 1/3 of magnetization saturation. c. The temperature of the sample, measured simultaneously with the magnetostriction, shows changes when the spin gap is closed at ~20 T, and also at ~40 T when stripe-like structures that break the tetragonal lattice symmetry form in the sample (2). d. Our magnetostriction measurements were extended to 97.4 T in the NHMFL 100 T repetitive pulse magnet, and revealed two features at 74 T and 82 T never before observed. **Left panel inset:** magnetostriction vs field showing magnetic texture between 28 T and 36 T (3). **Right panel inset:** magnetic field profile.

REFERENCES
5. M. Jaime et al., submitted
Magnetism and Magnetic Materials

LaCoO$_3$ is a material with a spin state cross-over occurring at laboratory accessible fields. Additionally, a new form of cooperative orbital-magnetic order, combining the S=0 and S=1 states, was discovered. This field induced spin-state crystallization is a novel phenomenon, and may also occur in ferric perovskite making up part of the Earth’s crust, affecting the dynamics of seismic waves.

Spin-State Crystallization in LaCoO$_3$ in Magnetic Fields Using 97T

During recent tests of the 95 tesla plus multishot magnet in Los Alamos, a new world record for non-destructive magnetic fields of 97.4 T was achieved. During the testing, several experiments were run in parallel involving recent users at the pulsed field facility. One of these concerned magnetization measurements of LaCoO$_3$ — performed in-situ utilizing the same susceptometer as used to calibrate the magnetic field using the de Haas-van Alphen effect in copper wire.

LaCoO$_3$ is of interest because it is a rare example of a crystalline material subject to a spin state crossover tuned by laboratory accessible magnetic fields. Whereas one simple spin-state crossover had been expected involving solely single ion effects, pulsed magnetic fields to ~65 T (inset to Figure 1a) revealed a curvature of the phase boundary at higher temperatures that had been missed in a recent study by competing group in Japan. A field-induced phase appeared to be developing. Sure enough, a field-induced phase was subsequently revealed in magnetic fields approaching 100 T by the observation of a second transition.

The discovery of spin-state crystallization could be relevant deep within the Earth’s crust where a spin-state crossover is expected to occur in ferric perovskites of the same crystalline structure. Spin-state crystalline, if it occurs, could potentially alter the dynamics of seismic waves.

Acknowledgements

Supported by NSF DMR-0654118 and BES program “Science at 100 tesla.” John Singleton, Chuck Swenson, Ross McDonald, Yates Coulter and Mike Gordon are acknowledged for technical help during the experiment.

REFERENCES

Magnetism and Magnetic Materials

Magnetization measurements were performed on a new family of Cu coordination polymers in fields of up to 92 T at the pulsed-field facility in Los Alamos. Magnetic fields in excess of 60 T were essential for determining the magnetic exchange energies and dimensionalities of these model antiferromagnetic compounds. Published in Inorganic Chemistry 51, 2121-2129 (2012).

High-Field Magnetization of the 1D CuBr$_2$(pyzO) (H$_2$O)$_2$ and 2D CuBr$_2$(pyz) Using 92T

J. A. Schlueter (Argonne National Lab); J. L. Manson (Eastern Washington Univ.); J. Singleton, R. McDonald (NHMFL-PFF)

Introduction

The magnetic properties of the newly crystallized CuBr$_2$(pyzO)(H$_2$O)$_2$ (pyzO = pyrazine-N,N'-dioxide) coordination polymer have been studied at fields up to 85 T and compared with those obtained for the related CuBr$_2$(pyz) (pyz = pyrazine) complex. The crystal structure of CuBr$_2$(pyzO)(H$_2$O)$_2$ is characterized by one-dimensional chains of Cu$^{2+}$ ions linked through bidentate pyzO ligands. These chains are joined together through OH···O hydrogen bonds between the water ligands and pyzO oxygen atoms and through Cu-Br···Br-Cu contacts. Bulk magnetic susceptibility measurements at ambient pressure show a broad maximum at 28 K that is indicative of short-range magnetic correlations. The dominant spin exchange is through the Cu-Br···Br-Cu pathway. The magnetic data were fitted to a Heisenberg 1D uniform antiferromagnetic chain model with $J_{1D}/k_B = -45.9(1)$ K. Muon-spin relaxation measurements were unable to definitively establish the presence of long-range magnetic order in CuBr$_2$(pyzO) (H$_2$O)$_2$ down to 0.26 K. The results for the CuBr$_2$(pyzO)(H$_2$O)$_2$ complex has been compared to the related CuBr$_2$(pyrazine) material, the structure of which is characterized by bridged Cu-Br-Cu chains linked through bridging pyrazine molecules resulting in a 2D rectangular lattice.

Experimental

Measurements made use of a 1.5mm bore, 1.5mm long, 1500-turn compensat-ed-coil susceptometer, constructed from 50 gauge high-purity copper wire and specially adapted for the 100 T multi-shot magnet. When a sample is within the coil, the signal is $V \propto (dM/dt)$, where t is the time. The sample is mounted within a 1.3 mm diameter ampoule that can be moved in and out of the coil. Accurate values of M are obtained by subtracting empty coil data from that measured under identical conditions with the sample present. Fields were provided by the 60 T short-pulse and 100 T multi-shot magnets at NHMFL-Los Alamos. The susceptometer was placed within a 3He cryostat for which temperatures as low as 0.4 K could be achieved.

Results and Discussion

Isothermal magnetization was measured as a function of pulsed magnetic field (figure). In the case of CuBr$_2$(pyzO)(H$_2$O)$_2$, the magnetization saturates at a field of 66.7(5) T, with strong upward curvature at lower fields indicative of one-dimensional magnetism. In a Heisenberg chain, the magnetization is expected to saturate at a field $B_{sat} = -2k_BJ_{1D}/g_\mu_B$, where the dominant exchange energy J_{1D} is expressed in Kelvin. Using the measured value of B_{sat}, $J_{1D} = -46.4(5)$ K was obtained. For CuBr$_2$(pyzO) (H$_2$O)$_2$, B_{sat} was found to be 78.2(5) T, yielding a $J_{1D} + J$ of -51.8(5) K.

Conclusions

Pulsed-field magnetization data to fields greater than 60 T were essential for validation of this method for obtaining exchange energies and confirmation of the magnetic dimensionality. Close agreement was found between the exchange energies obtained from fits of magnetic susceptibility data and those obtained from pulsed field magnetization.

Acknowledgements

Work at ANL was supported by U.S. DOE under contract DE-AC02-06CH11357 and work at the NHMFL was performed under the auspices of the NSF; the DoE project “Science at 100 T,” and the State of Florida.

REFERENCES

Magnetism and Magnetic Materials

Madalina Furis (U. Vermont) has demonstrated the first successful high-field Magnetic Circular Dichroism (MCD) experiment at 27.5 T in the Florida HELIX split-pair magnet. The measurements were performed on crystalline thin films of a prototypical organic semiconductor, copper phthalocyanine, revealing the onset of carrier-mediated exchange at low temperature.

Magnetic Circular Dichroism (MCD) of Copper Phthalocyanine Crystalline Thin Films Using the 25T Split Magnet

Z. Pan, N. Rawat, C. Lamarche, M. Furis (UVM, Physics); T. Tokumoto, D. Semenov, S. McGill (NHMFL)

Introduction

Research on metal-phthalocyanines (MPC) as archetype for organic semiconductors and optoelectronics applications has been extensive over the last decade. However, the magnetic studies on MPC, especially in the solid state phase, are sparse. In a crystalline phase MPC, π electrons are highly delocalized through the quasi-1D molecular chain, and interactions between localized unpaired d-shell electron spin of central ions could be mediated by the delocalized π electrons of the PC ring. Understanding the exchange mechanism will be extremely critical for magnetic applications. In our study, we are particularly interested in copper phthalocyanine (CuPC) crystalline thin film fabricated by solution processed pen-writing techniques, since in this spin ½ system, direct exchange is negligible and we could study pure indirect exchange between through itinerant carriers. In order to identify the electronic states responsible for the magnetism in the CuPC crystalline thin film, we performed magnetic circular dichroism (MCD) spectroscopy measurement in high magnetic fields.

Experimental

MCD measurements was carried out in the split-coil HELIX magnet in cell 5 of NHMFL with B fields up to 27.5 Tesla at 100 and 300 K. Light from an Oriel 300 watt Xenon lamp dispersed by a Cornerstone 260 monochromator with bandwidth of 2 nm was modulated into left and right circularly polarization in 50 kHz and focused using free space optics onto samples in Faraday geometry. Signal was collected by a multimode fiber and focused onto a silicon diode detector.

Results and Experiment

Figure 1 displays 300K MCD spectra from the CuPC film recorded at different magnetic fields. Each of the Gaussian features is associated with a distinct transition between states located at the bandgap of CuPC. All features are significantly broadened and redshifted in comparison to the ones observed in monomers. Since the MCD magnitude is proportional to the time-average of the total change in orbital momentum associated with a particular electronic transition and the electronic g-factor, it is expected that MCD increases linearly with applied magnetic field in the absence of any magnetic interactions. This is precisely what we observe at room temperature where MCD evolving with B field (inset) can be very well fitted with a straight line. This dependence remains linear at 100K with a slight increase in slope which corresponds to an increase in the g-factor. The results are not surprising since carrier-mediated exchange is only expected to manifest itself at temperatures lower than 10K.

Conclusions

We demonstrated the first successful high-field MCD experiment at 27.5T. MCD evolved linearly as B field increase at both 100 and 300 K with different slope (g-factor). Lower sample temperatures are needed to reveal the magnetic exchange mechanism in this system.

Acknowledgements

The Furis group was supported through NSF CAREER award DMR #105658.

REFERENCES
Magnetism and Magnetic Materials

Understanding why wave functions localize in the presence of disorder is a fundamental but difficult problem that is important for a wide variety of systems. Experimental and theoretical understanding of Bose glasses and Anderson localization has long been sought in diverse systems including superconductors, cold atoms, metals with impurities and helium. Bose glasses in quantum magnets are one of the most accessible and simplest to describe theoretically. This work makes one of the first contacts between theory and experiment in this field, and thus is a critical step forward.

Magnetic Susceptibility Measurements of the Bose-Glass Phase in NiCl$_{1.85}$Br$_{0.15}$-4SC(NH$_2$)$_2$ Down to 1 mK

L. Yin, J.S. Xia, N.S. Sullivan (Univ. Florida, Physics); C. Huan (Georgia Tech & Univ. Florida, Physics); V.S. Zapf (LANL); A. Paduan-Filho (Univ. de Sao Paulo); T. Roscilde (Ecole Normale Sup’erieure de Lyon); R. Yu (Rice Univ.)

Introduction

The phenomenon of a magnetic field induced Bose-Einstein Condensation (BEC) of quasiparticles in quantum magnets has been the subject of several investigations over the last decade, and it has been studied in a wide variety of materials, including NiCl$_2$-4SC(NH$_2$)$_2$ (DTN) which consists of coupled quasi-1D $S=1$ chains with strong single-ion anisotropy1,2. By adding disorder to a spin-gapped antiferromagnet by doping with non-magnetic impurities, the BEC is hindered with respect to the pure system by Anderson localization of the quasiparticles. At the critical field of the pure system quasiparticles do not condense in a zero-momentum state, but they fragment over an extensive number of localized states, and therefore the ground state of the system lacks global phase coherence.

Experimental

We have measured the AC susceptibility of a bound-diluted quantum magnet NiCl$_{1.85}$Br$_{0.15}$-4SC(NH$_2$)$_2$ down to 1mK and with a magnetic field ranging from 0 to 15 T. The experimental setup has been described elsewhere2,3.

Results and Discussion

Below a crossover temperature $T_{cr} = 100$–200 mK, we find that the critical fields H_c for Bose-Einstein condensation obey the scaling relation $|H_c(T) - H_c(0)| \sim T_{cr}$, with a novel and universal scaling exponent $\alpha \sim 0.9$, which is in agreement with numerical results from a theoretical model4,5.

Conclusions

Our findings provide strong evidence of the existence of a Bose glass phase in NiCl$_{1.85}$Br$_{0.15}$-4SC(NH$_2$)$_2$, and they display a quantitative signature of the transition between a Bose glass and a Bose Einstein condensate.

Acknowledgements

This research was carried out at the NHMFL High B/T facility which is supported by NSF Grant DMR 0654118 and by the State of Florida.

REFERENCES

Magnetism and Magnetic Materials

Multi-frequency EPR measurements were performed in fields up to 35 T on a Co(II) complex that was recently found to display slow magnetization relaxation behavior at low temperatures. High-fields were essential for unambiguously determining the spin-Hamiltonian parameters for this compound. The results suggest a new mechanism underpinning this slow relaxation behavior, thus motivating the development of new theoretical models describing the spin-lattice relaxation.

Published in Chemical Communications 48 (33), 3927-3929 (2012).

High-Field EPR Studies of a Mononuclear CoII Molecular Magnet

J.M. Zadrozny (UC Berkeley, Chemistry); J. Liu (UF, Physics); S. Hill (NHMFL & FSU, Physics); N.A. Piro, C.J. Chang, J.R. Long (UC Berkeley, Chemistry)

Introduction

We report high field EPR studies on a mononuclear cobalt complex [(3G)CoCl(CF3SO3)] (1). Ac susceptibility measurements on 1 demonstrate slow relaxation of magnetization with a relaxation barrier of 24 cm\(^{-1}\). High-field EPR measurements were performed on 1 to obtain a definitive determination of the sign and magnitude of the magnetic anisotropy of the compound\(^1\).

Experimental

Single-crystal high-field EPR measurements were carried out on 1 in a 35 T resistive magnet. A Millimeter Vector Network Analyzer and several different multipliers were used as a microwave source and detector. Powder EPR data for 1 were collected in a 15/17T superconducting magnet. A phase-locked Virginia Diodes solid-state source was employed, followed by a chain of multipliers.

Results and Experiment

The EPR data are interpreted with the following Hamiltonian:

\[
\hat{H} = D \hat{S}_z^2 + E(\hat{S}_x^2 - \hat{S}_y^2) + \mu_B \mathbf{B} \cdot \mathbf{g} \cdot \hat{S}
\]

The main panel of Figure 1 shows the positions of the EPR peaks observed via high-field studies of a single crystal oriented \textit{in situ} such that the field was close to the parallel (z) direction. The most notable feature is that three resonances are observed in the frequency range between 315 and 355 GHz. This can only be explained if 1 possesses easy-plane type anisotropy \((D > 0)\) and the field is applied close to the z-axis; otherwise, only one ground state transition would be observed. The solid blue curve corresponds to the best simulation of the data employing the following parameters: \(D = +12.7\) cm\(^{-1}\), \(E = 1.2\) cm\(^{-1}\), \(g_z = 2.17\) and a field misalignment of 15\(^\circ\). The same parameterization (with \(g_x = g_y = 2.30\)) accounts perfectly for the powder data (lower left portion of Figure 1).

Conclusions

High-field EPR data unambiguously demonstrate that 1 possesses easy-plane type anisotropy. To the best of our knowledge, this is the first example of a mononuclear transition metal complex with easy-plane type anisotropy that also exhibits slow magnetic relaxation. We propose that this behavior is due to spin-phonon selection rules that force relaxation to occur through excited states. A theoretical model is under development to explain the slow relaxation behavior.

Acknowledgements

This research was supported by DoE/LBNL grant 403801 (synthesis) and NSF grants CHE-1111900 (magnetism) and DMR-0804408 (EPR). The National High Magnetic Field Laboratory is supported by the NSF (DMR-0654118) and the State of Florida.

REFERENCES

Molecular Conductors

The high magnetic field behavior of resonance peaks and coherence peaks of angular magnetoresistance oscillations (AMRO) in quasi-two-dimensional electron systems was studied. The two-dimensional AMRO, or Kartsovnik-Kajita-Yamaji (KKY) oscillations, are widely observed in many layered materials with weak electron transport along the interlayer direction. Direct observation of spin-splitting of Shubnikov-de Haas oscillations and the observation of the modulation of the KKY oscillations are among the outstanding outputs of which the latter cannot be explained from the current theory of the KKY oscillations.

High Field Behavior of Kartsovnik-Kajita-Yamaji Resonance Peaks and the Coherence Peak of Quasi-two-dimensional Electrons

W. Kang (Ewha Womans Univ., Physics); Y. J. Jo (Kyungpook Univ., Physics)

Introduction

We studied high magnetic field behavior of resonance peaks and coherence peaks of angular magnetoresistance oscillations (AMRO) in quasi-two-dimensional electron systems. The two-dimensional AMRO, or Kartsovnik-Kajita-Yamaji (KKY) oscillations, are widely observed in many layered materials with weak electron transport along the interlayer direction. The positions of peaks follow the expression proposed by K. Yamaji. However, the height of peaks, especially that of the coherence peaks, varies drastically from one compound to another, which obscures their origin. There is a debate on the occurrence mechanism for the coherence peak. Recently, we observed giant and almost delta-function like KKY resonances and coherence peaks in a pressurized sample of β-(BEDT-TTF)$_2$I$_3$. In view of their quality, this sample is the most suitable to study quantitatively temperature and magnetic field dependence of resonant electronic transport behavior.

Experimental

The samples are mounted to a specially designed sample supports which is also fit into the probes in the NHMFL. Most of samples studied at home were conserved and brought to NHMFL. Precise determination was necessary in view of strong azimuthal angle dependence. Fine tune of the azimuthal angle was made in SCM2 (18T, mainly in the persistent mode) and further experiments were performed in one of resistive magnet to resolve the newly emerging structures on the AMRO near 90 degree.

Results and Discussion

We obtained two new outstanding results concerning the direct observation of spin-splitting of Shubnikov-de Haas oscillations (Figure 1) and the modulation of the KKY oscillations (Figure 2). The latter cannot be explained from the current theory of the KKY oscillations and is subject to further studies.

Acknowledgements

This work is supported by the government of Korea through a NRF Grants (2011-0000982, 0018744, 0019893).

REFERENCES

1. W. Kang, et al., Invited oral presentation at the ISCOM2011 (Gniezno, Poland, Sept. 2011)
Other Condensed Matter

This is a remarkable piece of theoretical artwork from the Master. The paper, in very physical and elegant fashion, sheds a new light on the nature of Charge Density Waves, an issue debated for decades. The author points out the important role of strong interactions between charge carriers and crystal lattice vibrations leading to polaronic effects. The conclusion agrees with recent experimental observations.

Strong Electron-Phonon Interactions and Polaronic Effects in Compounds with Transition-Metals-Atoms

L. P. Gor’kov (FSU, NHMFL)

Introduction

Mechanisms of Charge Density Waves (CDW) in Transition-Metals Di-Chalcogenids (TMDC) continue to be the topic of debates since the CDW discovery in 1974. For a long time the interpretation of the phenomenon was in terms of the popular “nesting” mechanism. Numerical calculations have not confirmed presence of such features for the Fermi-surfaces in these materials. Analysis of the early experimental data for CDW in 2H-TaSe₂ have found the short coherence length in the system below transition and large fluctuations, all in strong disagreement with predictions of the nesting scenario. Recent progress in the ARPES experiments revived the topic. In the report it is shown that both the normal and superconducting properties of TMDC reflect the important role of strong electron-phonon interactions displaying the polaronic effects.

Results and Discussion

We consider interaction of conduction electrons with the displacements of transitional atoms. Strong enough coupling transforms the harmonic potential of an ion into the potential well with two- or more deep minima. The system becomes the system of the Ising spins. The inter-site interactions are responsible for the CDW transformation. Since the structural vector, Q at such mechanism has nothing in common with the Fermi surfaces’ parameters, the system remains metallic below the CDW transition. Among the most typical manifestations of such strong e-ph coupling in the system are large characteristic energy scales significantly exceeding the temperatures for the onset of the CDW phase. Large value of the pseudogap seen in the tunneling experiments is related to the deep minimum of the two-well potential. It is shown that onset of CDW affects the density of state for the electronic band away from the Fermi surface, thus explaining the result of ARPES experiments. Properties of conduction electrons above and below the transition agree with the results of ARPES experiments. If e-ph coupling is strong enough for one or more bands, polaronic effects practically decouple these bands from the rest. This suggests the interpretation for a rather unexpected observation of the dHvA oscillations on the small pocket in 2H-NbSe₂ in the vortex state well below Hc₂.

Conclusions

The available experimental data, including the recent ARPES results, support the interpretation of properties of the transition-atoms-dichalcogenides in terms of the local polaronic effects.
Other Condensed Matter

The two-dimensional conduction layer forming at the interface of LaAlO$_3$ (LAO) and SrTiO$_3$ (STO) oxides is a subject of intense experimental and theoretical studies. This report focuses on unusual coexistence of magnetism and superconductivity observed between these nonmagnetic insulators. The nature of this intriguing phenomenon is not clear but for sure stems from an exotic superconducting ground state. On the application side, this novel two-dimensional magnetic material may be used in spintronics where both orbital and spin properties are used to process information.

· Published in *Nature Physics* 7, 762-766 (2011).

Coexistence of Magnetism and Two-Dimensional Superconductivity at Oxide Interface Using SCM and Torque Magnetometry

Lu Li (Univ. Michigan), C. Richter (Univ. Augsburg), J. Mannhart (Max Planck), R. C. Ashoori (MIT)

Introduction

Transition metal oxide has been a rich field for many intriguing physical phenomena, including high temperature superconductivity and colossal magnetoresistance. Interface devices of semiconductors are the driving force of current modern technology, such as transistors in computer chips, solid state lasers, and solar panels. We cannot help but wonder what novel effects will appear by combining interface fabrication and transition metal oxides. In this work atomic flat interface made between two nonmagnetic band insulators LaAlO$_3$ and SrTiO$_3$ (see the structure sketch in Figure 1a) turns out to be magnetic as well as superconducting, an coexistence never observed in two dimensional systems.

Experimental

Nb ohmic contacts were fabricated to measure the conductivity of the LAO/STO wafer. The torque magnetometry studies were performed in SCM1 and SCM2 using metal cantilevers. Background magnetic signals are measured of an empty cantilever, a bare SrTiO$_3$, and a 0 u.c. sample that was grown and annealed in the same condition. We also tried to carry out the torque magnetometry and electrical transport property *in situ* in the same setup.

Results and Discussion

We resolved the magnetic moment by measuring the torque on the interface sample under an external magnetic field. Figure 1b compares the magnetic field dependence of the resistance and magnetization of the sample. The magnetization curve resembles that of soft ferromagnet. On the other hand, the zero resistance demonstrates that the interface is indeed superconducting.

Conclusions

The unusual coexistence of superconductivity and magnetism would probably lead to an exotic superconducting ground state. On the practical side, our discovery leads to a new way to realize two dimensional magnetic materials, a crucial step for “spintronics”, which uses the “spin” property of the electron to make ultra high density hard drive and faster computer chips.

Acknowledgements

We thank the support from the Pappalardo Fellowship, MIT (L. L); ARO-54173PH (R.C.A), and DFG-TRR 80, EC-OxIDes (J.M.)

REFERENCES

FIGURE 1. a. LaAlO$_3$ thin film on a Ti-O$_2$ terminated atomic flat SrTiO$_3$ substrate. Taken from Reference 2. b. Low field dependence of magnetization (red) and resistivity (blue) at 20 mK at interface LaAlO$_3$/SrTiO$_3$.

The Magnet Lab 2011 Annual Report 25
Qubits and Quantum Entanglement

Silicon-based quantum dots and qubits are promising building blocks for quantum computer applications due to their long spin coherence times and potential scalability. Single electrons bound to donor atoms in Si:P have low temperature spin-lattice relaxation times of the order of seconds. Triple-Gate finFETs where fabricated and conductance measurements were carried out at 20 mK and magnetic fields of up to 18 T. The observed resonant transport features are consistent with tunneling through single donors, and the convergence is likely due to onset of two-electron tunneling. At high gate voltages, the carrier transport is in the Coulomb blockaded regime of multi-electron quantum dots. Producing entangled states should be possible in such systems.

Engineering CMOS-Compatible Quantum Dot Qubits for Local and Non-Local On-Chip Quantum Communication

C. C. Lo, J. Bokor (Lawrence Berkeley National Lab and Univ. of California, Berkeley); T. Last (UC Berkeley); T. Schenkel (LBNL)

Introduction

Semiconductor-based quantum dot and donor qubits are particularly promising as fundamental building blocks for quantum information processing (QIP) owing to their long coherence times and scalability\(^1\,^2\). For instance, single electron spins bound to shallow donor atoms in silicon (e.g. P, As, and Sb) have spin-lattice relaxation times at low temperatures of the order of seconds. Towards the development of CMOS-compatible silicon-based nanostructures for QIP, we carried out low temperature magnetotransport measurements to characterize few-dopant triple-gate finFETs (TG-finFETs).

Experimental

We developed silicon TG-finFETs owing to their compatibility with single-ion implantation for large-scale donor qubit integration for QIP. These custom-built few-donor doped devices were fabricated on 50nm thick silicon-on-insulator wafers. After defining the silicon fins by dry etching, the side-gates were deposited and patterned with a narrow gap in between. The exposed fins then received a low-dose ion implantation, and the smallest fins received five donor atoms on average. The SEM micrograph of a typical device prior to center fin-gate deposition is shown in Figure 1.

Magnetotransport measurements were carried out for two TG-finFETs using the SCM1 dilution refrigerator at the NHMFL with a base temperature of 20mK.

Results and Discussion

Figure 2 shows the conductance plot of a TF-finFET with lithographic length of 100nm and width of 50nm, measured with 0V dc drain bias and ac excitation of 20μV. The measurement was carried out with fixed side-gate voltages while the fin-gate voltage (\(V_g\)) is varied. For \(V_g<100\text{mV}\), a few of the transport resonance features shift with magnetic field: while some features split, others converge with increasing magnetic field. The splitting of the resonance lines can be understood as a manifestation of the Zeeman shifts for resonance features associated with paramagnetic states\(^3\). The convergence of the resonance features, on the other hand, is related to the increased probabilities for two-electron co-tunneling events that occur\(^4\). While these transport signatures are compatible with tunneling through single donors, further investigation is required for the definitive identification of the origin of these features. The oscillations at higher gate voltages (\(V_g>150\text{mV}\)) are periodic and reproducible, indicating carrier transport in the Coulomb blockaded regime of a multi-electron quantum dot.

Acknowledgements

Work at LBNL and UC Berkeley is supported by NSA (100000080295) and DOE (DE-AC02-05CH11231).

REFERENCES

Introduction

Superfluorescence (SF) is the process of cooperative emission of coherent radiation from an initially incoherent ensemble of excited dipoles. It represents one of the unusual examples of self-organization processes where macroscopic coherence spontaneously develops through many-body interactions among the individual dipoles. SF has been observed in atomic and molecular gases, but not in condensed matter systems where ultrafast scattering phenomena typically destroys such coherence.

Here, we present evidence for SF through time-resolved differential transmission (TRDT) and time-resolved photoluminescence (TRPL) measurements on an undoped In$_{0.2}$Ga$_{0.8}$As/GaAs multiple quantum well sample in magnetic fields up to 17.5 T. A magnetic field quenches the kinetic energy of electrons and holes and restricts the phase space available for phonon scattering, thereby increasing the coherence time. Furthermore, the concentration of density of states via Landau quantization increases the oscillator strengths of interband magneto-optical transitions. Combining the TRDT and TRPL measurements reveals the nature of the relaxation and the subsequent emission from the magneto-excitonic states.

Experimental

We performed the experiments in the Fast Optics Facility of the National High Magnetic Field Laboratory in Tallahassee, FL, using the 17.5 T superconducting magnet in Cell 3 (SCM3). The sample was placed in the magnet in the Faraday geometry. We used a high-intensity chirped pulse amplifier (CPA) to optically pump the sample, creating a high density of electron-hole pairs in the magneto-excitonic states. For TRDT measurements we used a tunable optical parametric amplifier (OPA) to probe the population of the states as a function of time delay using an optical delay line. For TRPL measurements, we collected the emission using two 0.6-mm core diameter multimode fibers: one placed directly behind the excitation spot and the other at the edge of the sample after redirecting the in-plane emission with a right-angle micro-prism. We then used a streak camera with a time resolution of 2 ps with a spectrometer to measure the spectrally resolved, time-resolved PL after the optical fiber.

Results and Discussion

Our data exhibit superfluorescent bursts under the conditions of high magnetic field, high excitation power, and low temperature (Figure 1). The data shown here is representative. We varied the magnetic field, excitation power, and temperature to show how the population and emission change under the various conditions.

Conclusions

Our time-resolved measurements mark the first time SF has been convincingly observed in a condensed matter system.

Acknowledgements

This research was sponsored by the NSF through grant DMR-1006663.

REFERENCES

Semiconductors

There is great interest currently in the origin and properties of the fractional quantum Hall (FQH) state at the even-denominator Landau level filling factor $\nu=5/2$. This interest partly stems from the expectation that the quasi-particle excitations of this state might obey non-Abelian statistics and be useful for topological quantum computing. The stability and robustness of the $5/2$ state are thus of great importance. This report describes the study of the stability of the FQH effect at $\nu=5/2$ when two electric subbands are occupied. The $5/2$ state is found to be surprisingly stable near the crossing of the Landau levels belonging to the different electric subbands.

Published in Phys. Rev. Lett. 107, 176805 (2011).

Anomalous Robustness of the $\nu = 5/2$ Fractional Quantum Hall Effect Near a Sharp Phase Boundary

Introduction

Fractional quantum Hall effect (FQHE) in a 2D electron system where two subbands are occupied reveals intriguing phenomena. Here we report our studies on electrons confined to a wide GaAs quantum well (QW), when both the symmetric (S) and antisymmetric (A) subbands are occupied. We studied the stability of the even denominator FQHE at $\nu = 5/2$ and $7/2$, when the Landau levels (LLs) belonging to different subbands cross.

Experimental

Each of our samples consists of a GaAs QW bounded on its sides by undoped Al$_{0.24}$Ga$_{0.76}$As spacer layers. The density (n) and subband separation are controlled by applying front- and back-gates, and measured through the Fourier analysis of the Shubnikov-de Haas oscillations. The FQHE measurements were carried out in SCM and resistive magnets.

Results and Discussion

Our surprising discovery, illustrated in Figure 1, is the anomalous robustness of the $\nu = 5/2$ FQHE near the crossing of the spin-up $N=1$ LL of the symmetric subband (S1↑) and the spin-up $N=0$ LL of the antisymmetric subband (A0↑). This is clearly evident in the plot of the excitation gap (Δ) of the $\nu = 5/2$ FQHE vs magnetic field (B) or n in Figure 1d: the $\nu = 5/2$ FQHE becomes stronger with increasing n before it collapses. Another noteworthy observation in Figure 1d is that, at a common density of $n = 3.2 \times 10^{11}$ cm$^{-2}$, Δ for the 31-nm-wide QW is nearly twice larger than for the 30-nm-wide QW. We conclude that the dramatic rise of Δ is related to the crossing of the S1↑ and A0↑ levels. When the density is further increased and the Fermi energy (E_F) moves to the A0↑ level, Δ suddenly collapses. The sharpness of the collapse suggests a first-order transition of the FQHE to a metallic state.

Conclusions

Our results show that: (i) The even-denominator FQHE states are stable when E_F is in an $N=1$ LL. (ii) The odd-denominator states are most stable when E_F is in an $N=0$ LL. (iii) The $5/2$ FQHE is anomalously stable near the crossing of the S1↑ and A0↑ levels.

Acknowledgements

This work was supported by NSF, DOE, and the Moore Foundation. We thank T. Murphy, J.H. Park, G. Jones and E. Palm for technical help.

REFERENCES

Superconductivity – Basic

A long-lasting question concerning possible coexistence of superconductivity and antiferromagnetism competing locally in the real space seems to be now resolved positively by the NMR experiments of Mounce et al. The problem was first posed in the late 90’s-early 2000’s, after the observations (B. Lake et al.) of a static incommensurate antiferromagnetism in the vortex state of LSCO with a sizable average magnetic moment on the Cu$^{2+}$ sites; the moment kept increasing with increase of the magnetic field. Scanning tunneling microscopy (STM) could see such a superstructure only as a checkerboard pattern in DOS on the surfaces of cleaved BSCCO. Unlike neutrons which are a bulk probe or the surface-sensitive STM, NMR is a bulk probe that can explore the local environment. In this report the authors provide results confirming coexistence of the diamagnetic currents at a vortex with SDW close to the normal vortex core and show evolution of the local SDW with increasing field.

Spin Density Wave Near the Vortex Cores of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$

A.M. Mounce, S. Oh, W.P. Halperin (Northwestern Univ.); A.P. Reyes, P.L. Kuntz (NHMFL), K. Fujita, M. Ishikado, S. Uchida (Univ. of Tokyo)

Introduction

The coexistence of superconductivity and magnetism in the high temperature superconducting (HTS) cuprates is a dichotomy still not fully understood. To investigate this relationship, experiments of spatially resolved nuclear magnetic resonance (NMR) are performed on the HTS Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (BSCCO) at high magnetic fields and low temperatures. A model for the experimental results indicates a spin density wave originates from the vortex cores and is enhanced with increasing external magnetic field.

Experimental

Samples were prepared by 17O isotopically exchanging single crystals of BSCCO and annealed to the overdoped regime with T$_c$ = 82 K. Spectra and spin-lattice relaxation data were taken with the crystal c-axis parallel to the external magnetic field and at low temperatures down to T = 4 K. Experiments were performed at the NHMFL and Northwestern University.

Results and Discussion

Previous spatially resolved NMR experiments on YBa$_2$Cu$_3$O$_{6+\delta}$ (YBCO) have shown a local magnet field dependent relaxation due to the Doppler shift of quasiparticles. Results from BSCCO show a non-monotonic relationship between local magnetic field and spin-lattice relaxation, while the average 1/T$_1$ is consistent with the Volovik effect indicating a vortex mechanism through Doppler shift. We use a model of a spin density wave (SDW) decaying away from the vortex core in addition to the local magnetic fields due to supercurrents. This results in a non-monotonic relationship between local magnetic field and Doppler-shifted relaxation. With increasing magnetic field, the SDW increases in magnitude changing the relaxation profile, Figure 1.

Conclusions

The spatially resolved NMR relaxation for BSCCO is explained by an additional SDW contribution to the local magnetic field. The field dependence of the SDW fitting parameters indicate an increasing amplitude with increasing magnetic field. This work has recently been published in Physical Review Letters.

Acknowledgements

This work is supported by DOE/BES: DE-FG02-05ER46248 and the NHMFL by NSF and the State of Florida.

REFERENCES

Superconductivity – Basic

Currently, there is great interest in the origin and properties of the fractional quantum Hall (FQH) state at the even-denominator Landau level filling factor \(\nu = 5/2 \). This interest partly stems from the expectation that the quasi-particle excitations of this state might obey non-Abelian statistics and be useful for topological quantum computing. The stability and robustness of the 5/2 state are thus of great importance. This report describes the study of the stability of the FQH effect at \(\nu = 5/2 \) when two electric subbands are occupied. The 5/2 state is found to be surprisingly stable near the crossing of the Landau levels belonging to the different electric subbands.

Quantum Oscillations in the Thermoelectric Properties of YBa\(_2\)Cu\(_3\)O\(_{6.54}\) to 45 T in the Hybrid Magnet

N. Doiron-Leyraud, S. René de Cotret, J. Chang, F. Laliberté (Sherbrooke); L. Taillefer (Sherbrooke and CIFAR); B. Ramshaw (UBC); R. Liang, D. Bonn, W. Hardy (UBC and CIFAR)

Introduction

Quantum oscillations and Hall effect measurements have revealed the existence of a small closed electron Fermi surface in underdoped YBCO\(^{1,2,3}\), in sharp contrast with the large hole Fermi surface seen in overdoped Ti2201\(^4\). This naturally suggests that a Fermi surface reconstruction occurs as a function of doping, possibly at a quantum phase transition where a form of density-wave order sets in. While a number of scenarios have been proposed, “the cause of the reconstruction, and its implication for the origin of high-temperature superconductivity, is a subject of active debate”\(^4,5\). In order to identify the cause of the reconstruction, we need to gain a better understanding of the Fermi surface of underdoped cuprates, a question we have recently examined through a series of thermoelectric experiments in high magnetic field.

Experimental

We performed a series of thermoelectric experiments up to 45 T using the hybrid magnet in cell 15 at the National High Magnetic Field Laboratory in Tallahassee. Our work focused in highly ordered ortho-II specimens of YBa\(_2\)Cu\(_3\)O\(_{6.54}\) \((p = 0.11)\) grown by the group of Liang, Bonn, and Hardy at the University of British Columbia. In Figure 1 we show the Seebeck coefficient \(S \) of YBa\(_2\)Cu\(_3\)O\(_{6.54}\) as a function of applied magnetic field at a temperature of 2 K. At sufficiently high field, above the vortex lattice melting line, the normal-state thermopower is strongly negative and exhibits large quantum oscillations (QOs)\(^5\). The curve shown in Figure 1 are raw, unsmoothed, data. QOs were also observed in the Nernst effect.

Results and Discussion

The existence of a small electron pocket was initially inferred from the simultaneous observation of QOs and a negative Hall effect\(^1,2\). It has been argued, however, that a negative Hall effect may come from vortices or a Fermi surface with changing curvature. The thermopower, however, is free from these effects and the observation of QOs on a strongly negative Seebeck coefficient is unambiguous evidence that the Fermi surface supporting the orbits is indeed electron-like\(^5\). We recently examined the range in doping and temperature of this negative Seebeck coefficient in YBCO and Eu-LSCO, a cuprate in which a form of spin and charge order known as “stripe order” has been observed. Our study revealed a detailed and striking similarity between the two materials, showing that the electron pocket and the Fermi surface reconstruction must share a common origin, namely stripe order\(^6\). NMR experiments in high magnetic field recently revealed stripe order in YBCO\(^7\).

Conclusions

We have observed large QOs in the

Acknowledgements

We acknowledge support from CIFAR, NSERC, FQRNT, CFI, and a Canada Research Chair.

REFERENCES

5. N. Doiron-Leyraud et al., to be published.
Superconductivity – Basic

A key challenge in understanding quantum oscillations in high Tc superconductors has been an identification of the underlying electronic structure, and a reconciliation with complementary experiments such as photoemission. Using data that extends over an unprecedented field range up to 101 T, Sebastian et al. suggest an elegant way of reconciling quantum oscillation experiments that reveal multiple frequency components, with photoemission results that reveal a nodal density of states with a small bilayer coupling. A comprehensive explanation is suggested in which quantum oscillations arise from bilayer-split nodal Fermi surface pockets accompanied by magnetic breakdown tunnelling.

Multiple Quantum Oscillation Frequencies from Nodal Pocket in Underdoped Cuprates to 95 T

S.E. Sebastian, G.G. Lonzarich (U. of Cambridge, Physics); C. Mielke, N. Harrison (Los Alamos National Laboratory); R. Liang, W.N. Hardy, D. A. Bonn (U. of British Columbia, Physics)

Introduction

Discerning the electronic structure of the underdoped cuprates poses a pressing conundrum. Among key questions to be addressed are the issue of whether the electronic structure comprises multiple pockets, and whether any of these are located at the antinodal region of the Brillouin zone where photoemission experiments reveal a significant gap in density of states at the Fermi Energy.

Experimental

We have performed quantum oscillation measurements on YBa$_2$Cu$_3$O$_{6.56}$ (hole doping of $\approx 10\%$) using the resonant oscillator technique, up to unprecedentedly high magnetic fields of 101 T at NHMFL Los Alamos. The wide field range thus accessed (24 – 100 T) enables a frequency resolution of ≈ 30T, enabling superior resolution of multiple quantum oscillation frequencies.

Results and Discussion

A distinct pattern of quantum oscillation frequencies observed, with a spectrally dominant frequency at 532(2)T, flanked on either side by frequencies 440(10)T and 620(10)T spaced equidistantly from the central frequency (Figure 1). At first sight, these three frequencies appear challenging to reconcile with a single Fermi surface pocket indicated from chemical potential oscillations.

We propose that this pattern of frequencies can be explained by the effect of bilayer splitting accompanied by magnetic breakdown on a nodal pocket. YBa$_2$Cu$_3$O$_{6.56}$ comprises bilayers (i.e. pairs of planes) of CuO$_2$, the effect of bilayer coupling is to split each Fermi surface pocket into two surface (as shown in Figure 2). This still leaves us with the problem of how to explain three frequencies from a Fermi surface pocket.

In the case of a nodal pocket, however, we invoke the additional effect of magnetic breakdown due to the small size of bilayer splitting at the nodes compared to the antinodes.
Quasiparticles can therefore tunnel between the two split pockets at the nodes. An example is shown in Figure 2b, where the pink and purple ellipses are the split elliptical nodal pockets. The dotted purple line shows an elliptical orbit arising due to magnetic breakdown between the two split pockets, with frequency equal to the average of the two split frequencies. Another example is shown in figure a, where the nodal pocket has a diamond shape. The resulting frequency spectrum therefore would have the form $F + \Delta F$, $F - \Delta F$, and their average F — which is in fact precisely the same as that experimentally observed.

The dotted lines in Figures 1a and 1b show a simulation of the oscillation spectrum anticipated for a nodal pocket of an ellipsoidal shape, and a diamond shape respectively with a single adjustable variable: the size of magnetic breakdown field, good agreement is seen with the experimentally observed quantum oscillation spectrum.

Conclusions

Quantum oscillations measured up to 101 T in the underdoped cuprate YBa$_2$Cu$_3$O$_{6.56}$ reveal well separated multiple frequencies with a characteristic $F + \Delta F$, $F - \Delta F$, F pattern. We propose that these can be explained by effects of bilayer splitting accompanied by magnetic breakdown on a nodal pocket.

REFERENCES

Superconductivity – Basic

A team of scientists from Oxford University and Bristol University reports dHvA oscillations in LiFeAs and LiFeP. ARPES data disagree with the Fermi surfaces in LiFeAs obtained in the band structure calculations. That prompted the bulk study of electronic spectrum of these materials in the dHvA experiments. The outcome is that the observed Fermi surfaces are in good agreement with those from the band calculations. For LiFeAs the comparison of the calculated “band masses” with the observable orbital masses has shown considerable enhancement due to both electron-electron and electron-phonon interactions. As LiFeAs and LiFeP are predicted to have similar electron-phonon coupling it is very likely that the observed effect is related to enhanced electronic correlations linked to higher T_c in iron-based superconductors.

Quantum Oscillations in the 111 Iron Pnictide Superconductors: LiFeAs and LiFeP Using 45T Hybrid Magnet

A. I Coldea, M.D. Watson (Oxford University, UK); C. Putzke, I. Guillamon, A. Carrington (Bristol University, UK); S. Kasahara, T. Shibauchi, Y. Matsuda (Kyoto University, Japan)

The aim of our experiment was to study the Fermi surface topology of the ‘111’ structure superconductors in the superconducting LiFeAs with T_c=18.5 K and LiFeP with T_c=5 K which are two of only a few iron-based superconductors which superconduct at ambient pressure in their undoped stoichiometric form. ARPES studies have suggested that LiFeAs has a Fermi surface that disagree with band structure calculations and bulk studies of the Fermi surface are required to clarify whether spin fluctuations are relevant in iron pnictides. Furthermore, these materials can be grown in high crystalline form and have been found to show different gap symmetry, having a fully gapped superconducting order parameter in LiFeAs and there are suggestions that LiFeP has nodes. An additional challenge concerning experimental investigation of these materials, which are supposed to be some of the cleanest iron pnictides, is their significant sensitivity to air.

During our last experiment in the 45T hybrid magnet we have been able to observe dHvA oscillations in these two compounds in order to map out the Fermi surface of these two isoelectronic systems. We have determined almost completely the Fermi surface of LiFeP in broad agreement with band structure calculations and found out that the mass enhancement varies significantly between bands, being quite small for one of the bands. These findings could suggest that the inner hole band could be the place for nodes formation. Our study on LiFeAs has found that the observed orbits belong to the electron bands and are well described by the band structure calculations without any energy shifts; the mass enhancement for the observed electron bands in LiFeAs is significant, a factor up to 5, being linked to the higher T_c of this optimally doped system. However, more work is required to clarify how well nested the Fermi surface of LiFeAs is.

Acknowledgements

This work is supported by EPSRC (UK), EuroMagNET II under the EU contract no.228043, KAKENHI from JSPS. A part of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-0516881, the State of Florida, and the U.S. Department of Energy.

REFERENCES

Engineering Materials

The desire to create next generation materials with better mechanical properties can be achieved using metal matrix composites by incorporating a fine dispersion of strengthening particles. A crucial requirement to achieve the enhanced performance is that the fine particles be homogeneously dispersed throughout the matrix. In addition, preferential directional (textured) performance of the final material can be achieved by leveraging the magnetocrystalline anisotropy of the material. This research indicates that both uniformly dispersed nanoparticles and a textured matrix can be obtained in a single alloy by a combination of thermomagnetic processing and electromagnetic acoustic transducer technologies.

G.M. Ludtka; G. Mackiewicz-Ludtka, O. Rios; J.B. Wilgen; R.A. Kisner, G. Muralidharan (Oak Ridge National Lab); M. Manuel (Univ. of Florida)

Introduction

This research demonstrates that significantly enhanced materials microstructures and improved performance can be achieved by coupling two previously independent materials research concepts, namely, the thermo-magnetic processing (T-MP)\(^1\) and the electromagnetic acoustic transducer (EMAT)\(^2\) technologies. In prior, separate NHMFL research endeavors, ORNL researchers have demonstrated that: 1.) thermo-magnetic processing (T-MP) can significantly enhance Ni solubility in Fe by up to 30%; and 2.) using the electromagnetic acoustic transducer (EMAT) technology can significantly improve cast product homogeneity. Based on these earlier successful results, we proposed simultaneously coupling these two R&D approaches/effects (i.e., T-MP with EMAT), in order to simultaneously achieve: 1.) enhanced elemental solid-solubility in Mg and in at least one Fe-based alloy; and 2.) uniform dispersion of intentional additions of inert nanoparticles in Mg. Developing homogeneous dispersions of inert nanoparticles is and has been pursued as one of the “holy grails” for achieving unprecedented materials performance and highly desired mechanical properties, e.g., in creep and oxidation resistant alloys. Successfully coupling these two technologies would provide the ability to create uniquely controlled nano-scale microstructures that currently are unachievable by any other materials processing technologies.

Experimental

A series of 14 different Mg samples were prepared that either had a pure Mg or Mg-Li alloy matrix and nanoparticles dispersions of either diamond, Er\(_2\)O\(_3\), or Dy\(_2\)O\(_3\). In addition, several Fe-Co-Ni alloys were cast for enhanced texturing and increased solute solubility. The Mg alloy samples were processed with the T-MP and EMAT processes superimposed (stopped EMAT 20 °C above liquidus) to homogeneously distribute the nanoparticles whereas the Fe-based alloys had the EMAT effect turned off to promote magneto anisotropy-induced texturing to occur during solidification.

Results and Discussion

Subsequent radiography and microscopy analyses of the Mg and Mg-alloy castings showed uniform dispersions of nanoparticles could be achieved but results were directly dependent on the quality/uniformity of the starting materials. The Fe-based experiments, shown in Figure 1, showed that very highly textured, bulk castings could be achieved over a broad range of cooling rates (30 to 300 °C/min) by applying a high magnetic field (19 T) during solidification.

Conclusions

Combined T-MP and EMAT processing facilitates uniform, non-agglomerated dispersions of nano-particles in Mg. In addition, T-MP processing of Fe-based alloys during solidification can achieve highly textured, bulk castings.

Acknowledgements

Research supported by the ORNL’s Laboratory Directed Research and Development Program.

REFERENCES

Chapter 2: Magnets & Magnet Materials

Magnet Technology

REBCO coated high temperature superconductor has excellent tensile properties in rolling direction due to the use of high strength alloy as a substrate. In transverse direction, however, the conductor fails early, mechanically as well as electrically due to delamination and destruction of the superconducting layer. The authors achieved a technological breakthrough in magnet technology by devising a method that mechanically uncouples transverse loads from the conductor by using a thin-walled polyester heat shrink tube around the conductor.

Published in Appl. Phys. Lett. 99, 202506 (2011).

Mechanical Decoupling of ReBCO Coated Conductors in High Field Coils Using Thin-Walled Heat-Shrink Tubing Insulation to Prevent Stress-Induced Damage

Experimental

We incorporate an unusual conductor insulation, a medical-grade, low-temperature compatible, extremely thin-walled heat-shrink tubing, manufactured by and proprietary to Vention Medical, Inc. This tubing consists of an extruded and expanded polyethylene terephthalate, a polyester, with a melting point of about 508 K, an operating temperature range of 77 K – 408 K, and a 3.8 µm minimum thickness.

Recently confirmed in an epoxy-impregnated world-record superconducting coil (Figure 1), this insulation uniformly insulates tape conductors, including the edges of the conductors, and does not crack at low temperatures, especially while sustaining bending or tensile strain. Because shrinkage and not adhesion is the functional basis of this tubing, thermal and electromagnetic tensile and shear stresses are minimized at the boundary between conductor and encapsulant.

Discussion

The heat-shrink tubing allows the use of a strong encapsulant such as epoxy, anchoring the windings without applying perpendicular tensile stresses to the conductor. Numerous examples of conductor delamination in various labs due to stresses developed during cooling or energization of epoxy-impregnated superconducting coils make this development of great value.

Conclusions

Because all present designs of coated conductors tend to have relatively weak bonding between their metal and oxide components, and because high field magnets necessarily develop significant stresses, this invention addresses an important problem of this technology. A U.S. provisional patent application (61/420,429) has been filed that is being converted into a U.S. utility patent.

Acknowledgements

This work is funded by the NSF (Award No. DMR-0654118).

References

Magnet Technology

In a household extension cord, the copper wire is coated with plastic, which electrically insulates the wire. At the Magnet Lab, magnets are made from electrically conducting wires that also need to be insulated from one another. One magnet that is being developed, the 32 T all-superconducting magnet, is made with bare flat wires that carry the current. When the coil is wound, these flat tapes are electrically isolated from one another with a flat stainless steel tape that is coated with a layer of insulating material. In this study, two different insulating materials that coat the stainless steel tape, each with its own method for being applied, were developed.

Insulation of Coated Conductors for High Field Magnet Applications

Introduction

Insulation in a high field superconducting magnet plays a critical role. High field magnets require very thin (e.g. < 12.5 μm) insulation with sufficient mechanical and dielectric strength under high stresses at cryogenic temperatures. Within the framework of the construction of the 32 T all-superconducting magnet, two types of reel-to-reel systems, which insulate either the coated conductor or steel co-winding tapes, have been developed.

Experimental

A UV cured epoxy coating system has been built as shown in Figure 1. A suitable UV cured epoxy EPO-TEK* UVO-114 has been identified and used in the process. For insulation of steel co-winding tape, we also chose a ceramic sol gel coating process. The sol gel is made by mixing (in weight) one part of silica sol gel (Silbond H-5), two parts of ethanol and 0.3 part of 0.3 μm sized alpha alumina powder. The reel-to-reel dip coating system in Figure 1 is modified by addition of a tube furnace, so the sol gel coated steel tape is dried at 300 C and calcinated at 700 C.

Results and Discussion

The UV epoxy insulation is nominally 10 μm thick with a typical breakdown voltage of about 400 V. It has about 5 μm thickness variation along the tape width. The corners are not fully covered, although in case of the 32 T pancake coils, the corner coverage is not critical. These problems are related to the rheology of the coating process. Sol gel coating on steel tapes has superior thermal properties. The coating thickness is approximately 2 μm with a typical breakdown voltage of about 200 V. Similar to the epoxy coating, the sol gel coating has issues of corner coverage and the thickness build-up near the edges. An air-flow assisted sol gel drying process is being developed as a promising technique to mitigate these problems. Both methods were used to insulate hundreds of meters of steel co-winding tapes which have been successfully used in the 32 T test coils.

Conclusions

Both the UV-cured epoxy-coating and sol gel coating has been developed for insulating YBCO coated conductors and steel co-winding tapes. Long length steel tapes have been insulated for 32 T test coils using both techniques. The issues of corner coverage and the thickness build-up at the edges are being addressed.

Acknowledgements

This work was supported by the National Science Foundation under Grant No. DMR-0654118.

REFERENCES

Superconductivity – Applied

The full potential of Bi2212 high temperature superconducting round wire is masked by void space that forms inside the conductor during the thermal processing that is required to form a well aligned current carrying crystal structure. The authors achieved a technological breakthrough by devising a processing scheme that significantly reduces the void space in the conductor and at least doubled the critical current density in a series of short wire samples consistently.

- Published in *Superconductor Science and Technology* 24, 082001 (2011).

Doubled Critical Current Density in Bi-2212 Wires by Reduction of Gas Bubble Density

Introduction

The filament density of Bi-2212 wire in the as-drawn state is much less than 100%, typically about 70% of the theoretical density of Bi-2212. In order to better understand the effects of this less than full density on the critical current density \(J_c\), we quenched samples of Bi-2212 wires just after they entered the melt phase and observed many large gas bubbles, most as big as the filament diameter. Although the overall effect of melt processing on \(J_c\) is highly positive, \(J_c\) is certainly lowered by formation of these bubbles which of course do not support a supercurrent.

Experimental

In order to fill the filaments with O₂ gas, which can diffuse through the Ag sheath, Bi-2212 wire samples were heated at 400 °C for 48 h under a vacuum of 20 mtorr. After cooling, the samples were filled with 1 bar oxygen and held for 16 h. When the wires were removed from the furnace, their ends were immediately sealed by dipping in molten Ag or Sn and the filaments were densified under a cold isostatic pressure (CIP) of 2 GPa before the following melt processing step.

Results

The longitudinal cross sections of the quenched samples are shown in Figure 1. Gas bubbles in the as-received wire are big, being 2 to 3 times as long as their diameter, while the bubbles in the CIPped wire are much shorter, round and are smaller than the filament diameter. Table 1 compares the values of \(I_c\) (4.2 K, 5 T) for the CIPped samples were more than doubled, and their \(n\) values are also much higher than for the as-received wires, consistent with an increase in the longitudinal uniformity of the \(I_c\). \(J_c\) (4.2 K, 5 T) was increased from 1667 to 3600 A/mm² for the CIPped wire.

Conclusions

We found a significant improvement of \(J_c\) in recent Bi-2212 round wires by replacing residual air in the filament by pure oxygen and cold isostatic pressing them before melt-processing. The fewer and smaller bubbles formed in the melt allowed the critical current \(I_c\) (4.2 K, 5 T) to be doubled. Controlling the formation of bubbles through approaches like CIPping was shown to be a very effective pathway to achieve very high \(J_c\) in Bi-2212 wires.

Acknowledgements

The work at the NHMFL was supported by an ARRA grant of the US Department of Energy Office of High Energy Physics and by the NHMFL which is supported by the National Science Foundation under NSF/DMR-0654118 and by the State of Florida.

<table>
<thead>
<tr>
<th>(T_{\text{max}}) °C</th>
<th>AR or CIP</th>
<th>(I_c) (A)</th>
<th>(J_c) (A/mm²)</th>
<th>(J_c) (A/mm²)</th>
<th>(n) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>884</td>
<td>AR</td>
<td>155.0</td>
<td>325</td>
<td>1174</td>
<td>9</td>
</tr>
<tr>
<td>884</td>
<td>CIP</td>
<td>385.4</td>
<td>807</td>
<td>3602</td>
<td>21</td>
</tr>
<tr>
<td>885</td>
<td>AR</td>
<td>175.8</td>
<td>350</td>
<td>1332</td>
<td>13</td>
</tr>
<tr>
<td>885</td>
<td>CIP</td>
<td>386.4</td>
<td>809</td>
<td>3611</td>
<td>20</td>
</tr>
<tr>
<td>888*</td>
<td>AR</td>
<td>220.0</td>
<td>438</td>
<td>1667</td>
<td>11</td>
</tr>
</tbody>
</table>

*888 °C gave the maximum \(I_c\) for AR wire.

REFERENCES

Superconductivity – Applied

To integrate high-temperature superconductors (HTS) in sizeable high field magnets, like a 60 T DC Hybrid magnet, HTS cables are required. Of the three concepts that seem viable at this time, this is the first to be tested in realistic conditions. The results under hoop stress at low temperature and high magnetic field are very encouraging.

Published in Supercond. Sci. Technol. 25, 014003 (2012).

Critical Current Measurement at 4.2 K Up to 20 T of REBa$_2$Cu$_3$O$_{7-\delta}$ Coated Conductor Cables Designed for High-Field Magnet Applications

D.C. van der Laan (NIST and Univ. of Colorado Boulder); **H. Weijers, P. Noyes, G. Miller** (NHMFL, Florida State Univ.)

Introduction

The next generation of high-field magnets requires operating fields exceeding 20 T and that cannot be reached with low-temperature superconductors, such as NbTi or Nb$_3$Sn, and high-temperature superconductors (HTS), such as REBa$_2$Cu$_3$O$_{7-\delta}$ (REBCO) coated conductors, are the only option. We have introduced a new cabling method that enables the construction of round, HTS cables that meet the requirements for high-field magnets\(^1,2\) and performed the first cable tests at 4.2 K at magnetic fields up to 20 T at the user facility of the NHMFL.

Experimental

Several REBCO coated conductors cables were constructed using the method as outlined in Reference 1. The cables were mounted into the support structure (see Figure 1a) to support them against the high Lorenz force that occurs at 20 T. The critical current (I_c) of each cable will be measured at 4.2 K, at magnetic fields of up to 20 T.

Results and Discussion

The critical current as a function of magnetic field at 4.2 K up to 20 T of one of the cables is shown in Figure 1b. The critical current could not be measured at fields below 2 T because of the 3500 A current supply limit. The cable I_c that was measured at 76 K in self-field is also included in the figure and, as expected, is comparable to that at 4.2 K and 20 T. No degradation in cable performance due to the high Lorenz force was measured.

Conclusions

We successfully performed the world’s first measurement of an HTS cable at a field of 20 T. The results show the feasibility of HTS cables for high-field magnets.

Acknowledgements

This work was supported in part by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability under award number DE-AC05-98OR22652.

REFERENCES

Chemistry

Seven new cyclic depsipeptides were identified in a marine cyanobacteria, which is a validated source organism of potent and structurally diverse antiproliferative agents.

- Published in Journal of Natural Products 74, 917-927 (2011).

Veraguamides A−G, Novel Cyclic Hexadepsipeptides with Antiproliferative Activity from the Marine Cyanobacterium Symploca cf. hydnoides from Guam

L.A. Salvador, H. Luesch (Univ. of Florida, Medicinal Chemistry); J.S. Biggs (Univ. of Guam Marine Laboratory); V.J. Paul (Smithsonian Marine Station)

Introduction

Marine cyanobacteria of the genus Symploca are validated source organisms of potent and structurally diverse antiproliferative agents, yielding the HDAC inhibitor largazole and microtubule depolymerizers dolastatin 10 and symplostatin 1. We aim to find new classes of bioactive metabolites from Symploca sp. through a bioactivity-directed purification method.

Experimental

1H and 2D NMR spectra were recorded on a Bruker Avance II 600 MHz spectrometer equipped with a 5 mm TXI cryogenic probe using residual solvent signals as internal standards.

Results and Discussion

Cytotoxicity-directed purification of a S. cf. hydnoides collection afforded seven new cyclic depsipeptides, veraguamides A−G (1−7), characterized by an invariant proline residue, multiple N-methylated amino acids, an α-hydroxy acid, and a C$_8$-polyketide derived β-hydroxy acid moiety with a characteristic terminus as either an alkynyl bromide, alkyne, or vinyl group. These compounds and a semisynthetic analog (8) showed micromolar antiproliferative activity against HT29 colorectal adenocarcinoma and HeLa cervical carcinoma cell lines.

Conclusions

We identified new antiproliferative agents from the marine cyanobacterium Symploca cf. hydnoides.

Acknowledgements

NIGMS grant P41GM086210, J. R. Rocca, and J. Quiñata.

REFERENCES

Chemistry

Chapter 2: Chemistry

This work deals with magnetic interactions of Cr(IV) ions in a Cr-Cr dimer. It is important, as Cr(IV) is a largely unexplored oxidation state of chromium. Second, it probes the basic spin-spin interactions that are responsible for the phenomena of molecular magnets, and particularly molecular nanomagnets.

Published in Journal of the American Chemical Society 133, 13661-13673 (2011).

High Frequency EPR Study of a Cr(IV)-O-Cr(IV) Dimer Complex

Introduction

The 4+ oxidation state of Cr, with a 3d⁶ configuration remains unexplored. This work details the assignment of the 4+ oxidation state of Cr in a Cr-O-Cr dimer, using high frequency EPR, as reported recently. The autocatalytic oxidation of the trianionic pincer Cr³⁺ complex [BuOCO]Cr³⁺(THF), 1, by [BuOCO]Cr⁵⁺(O)-(THF), 2, produces the intermediate Cr⁴⁺-O-Cr⁴⁺ complex {[BuOCO]Cr⁴⁺(THF)}₂(μ-O), 3 (Figure 1); where tBuOCO = [2,6-(tBuC₆H₃O)₂C₆H₃]⁻ and THF = tetrahydrofuran. 240 GHz EPR is used to determine of the electronic structure of 3.

Experimental

Variable temperature, high frequency (240 GHz), powder EPR measurements were made using the 240 GHz EPR spectrometer and 12.5 T SC magnet at the National High Magnetic Field Laboratory, Tallahassee, FL.

Results and Discussion

The experimental powder EPR spectrum of 3 (Figure 2b) indicates the presence of weak signals from Cr³⁺ (S=3/2) along with those of 3 (S=2). Computer simulation of the spectrum using the standard spin Hamiltonian of a paramagnetic dimer with two spin fragments S₁ and S₂ did not reproduce all the observed lines. However, considering that 3 is in equilibrium with the monomeric complexes 1 and 2, we included 1 in the simulation. A combination of 3 and 1 (in the ratio 2.5:1) yielded a good fit to the observed resonances marked by the numbers 1 through 9 (Figure 2a). Signals from complex 2 (S=1/2) are difficult to be distinguished among the resonances 5, 6 and 7 (Figure 2a), and it is present in < 10%, thus we excluded 2 in the simulation. The spin Hamiltonian parameters for the Cr³⁺-O-Cr⁴⁺ dimer (S=2) are g₁₂ = 1.976, D = 10500 G and E = 3000 G. Figure 3 shows the simulated energy levels of 1 and 3.

Conclusions

The good fit between the experimental and simulated spectra permits a conclusive assignment of the 4+ oxidation state for each Cr ion in complex 3. This is the first evidence of EPR in a Cr⁴⁺-O-Cr⁴⁺ complex.

Acknowledgements

Supported by the NSF CAREER (CHE-0748408), the ACS-PRF(G) (#44063-G3), the Camile and Henry Dreyfus Foundation, the Alfred P. Sloan Foundation, and the NHMFL. We thank Z. Wang and Dr. J. van Tol for their assistance.

References

Chemistry

Open shell organic molecules have low energy scales that make them susceptible to tuning with various external stimuli such as temperature, pressure, and magnetic field. In this work, J.L. Musfeldt et al. combine magneto-optical spectroscopy with first principles electronic structure calculations to understand the field-induced color change in 1,4-phenylenedinitrene. They show that the magnetochromic response is a sensitive measure of the field-tunable singlet-triplet equilibrium and present an optical Curie-like analysis that can be used to reveal the spin gap.

Manipulating the Singlet-Triplet Equilibrium in Organic Biradical Materials

J.L. Musfeldt, O. Gunaydin-Sen, J. Fosso-Tande, P. Chen, J. L. White and R. J. Harrison (Univ. of Tennessee); T. L. Allen and P. M. Lahti (Univ. of Massachusetts); J. Cherian, T. Tokumoto and S. McGill (NHMFL)

Introduction

The photophysics of small organic molecules is of foundational importance to the field of physical organic chemistry. One very useful aspect of small molecule photochemistry is the ability to create and stabilize trapped spin states via low temperature photolysis. Open-shell molecules created in this way display unique electronic structure and magnetic exchange interactions that allow investigation of the interplay between charge, structure, and magnetism. A ground or thermally accessible paramagnetic state provides insight into behavior that is very promising for light harvesting, controllable reactivity, and spin valve applications. 1,4-Diazidobenzene attracted our attention in this regard. Like several other aromatic azides, it undergoes a photochemical reaction to yield 1,4-phenylenedinitrene. The latter is a persistent spin singlet biradical (T < 90 K) with a low-lying triplet state as shown schematically in Figure 1a. The singlet-triplet gap offers a simple way to allow population changes with temperature and potentially support tuning by magnetic field.

Results and Discussion

Figure 1 summarizes our magneto-optical investigation of 1,4-phenylenedinitrene. The rich magnetochromic response occurs because applied field increases the concentration of the triplet state species, which has a unique optical signature by comparison with the singlet biradical and the precursor molecule. Ordinarily, one does not expect a low energy tuning parameter like magnetic field to impact high energy properties like electronic structure. Things are different here because a small spin gap allows an applied field to manipulate the population and (at high enough fields) drive the system into the fully polarized triplet state. A Curie-like analysis of the magneto-optical properties allows us to extract the spin gap, which is much smaller than previously supposed. These measurements establish the value of local-probe photophysical techniques for magnetic property determination in open-shell systems like biradicals where a traditional Curie law analysis has intrinsic limitations.

Acknowledgements

This work was supported by the National Science Foundation (DMR-1063880 and CHE 0834011).

REFERENCES

Chemistry

First documented case of extreme biomarker enrichment in a production deposit and identification of perylene as the biomarker that is responsible for the blue color of the oil.

Analysis and Identification of Biomarkers and Origin of Color in a Bright Blue Crude Oil

P. Juyal, A.B. Andrews, A. Yen, S.J. Allenson, O.C. Mullins (NALCO); **A.M. McKenna** (NHMFL, Chemistry); **R.P. Rodgers, A.G. Marshall** (Florida State Univ., NHMFL, Chemistry); **C.M. Reddy, R.K. Nelson**, (Woods Hole Oceanographic Institute); **E. Atolia** (NHMFL)

Results and Discussion

We describe the detailed analysis and characterization of an unusual blue crude oil (Figure 1) and a deposit from the monoethylene glycol (MEG) regeneration unit (MRU) on an offshore crude oil production platform. To characterize the deposit and the components in the crude oil that give it such a distinct blue hue, we investigated the samples with comprehensive two-dimensional gas chromatography (GCxGC), Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), and two-dimensional (2D) fluorescence spectroscopy. Perylene, a polycyclic aromatic hydrocarbon, known to fluoresce, was identified in the crude oil with all three of these techniques. On the basis of its photochemical properties and abundance (55 ppm), we infer perylene to be the most likely source of the blue color. In addition, we were able to conclusively identify by GCxGC a suite of pentacyclic triterpenoids, of which the most abundant species was 17R(H),21β(H)-25-norhopane. The deposit is greatly enriched in these species. The presence of 25-norhopanes in a crude oil is considered as an indication for severe biodegradation.

Acknowledgements

The authors thank Anadarko Petroleum Corporation for providing the samples and permission to publish the results. Helpful discussions with Bob Buck (Anadarko) are sincerely appreci-ated. FT-ICR MS was supported by the National Science Foundation (NSF) (DMR-06-54118) and the State of Florida. GCxGC analysis was supported by the Department of Energy (DOE) DE-FG02-06ER15775.

REFERENCES

Geochemistry

The Gulf Oil Spill will undoubtedly be the most studied natural disaster in history. In an initial report by Chanton et al., radiocarbon contents were tracked in the Gulf of Mexico and provide a radiocarbon map of the massive amount of oil that was introduced into the Gulf ecosystem. The oil provides a unique radiocarbon dead organic matter tracer that will be used in future studies to refine the resolution of the path of the oil spill and aid other analytical methods.

Radiocarbon Analysis of the Gulf Oil Spill

J. Chanton (Florida State Univ., Earth, Ocean and Atmospheric Sciences); S. Bosman, A. Mickel (FSU Coastal and Marine Laboratory); S. Joye (Univ. of Georgia, Marine Sciences); C. Brunner (Univ. of Southern Mississippi, Marine Sciences); J. Cherrier and J. Sarkodee-Adoo (Florida A&M Univ., Environmental Science); D. Hollander, (Univ. of South Florida Marine Sciences)

Introduction

The Gulf Oil Spill injected a unique tracer into the Gulf of Mexico, radiocarbon-free fossil organic matter. Most Gulf organic matter is fixed at the surface with a modern radiocarbon (14C) content. We have traced the input of petro-carbon into the Gulf by following input of radiocarbon dead organic matter into the sediments and fauna.

Experimental

Sediment and muscle tissue were ground to a fine powder using an electric mill. Approximately 500 micro-g of tissue for carbon and nitrogen analysis were wrapped in tin capsules for analysis at the National High Magnetic Field laboratory in Tallahassee, FL. Samples were analyzed by using a continuous flow Thermo Delta Plus Mass Spectrometer coupled to a CHNS analyzer. Subsamples were prepared for radiocarbon analysis on the vacuum line of Dr. Yang Wang at the Magnet Lab and measured at the NSF’s National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS), at Woods Hole, MA.

Results and Discussion

This map shows the radiocarbon content of sedimentary organic matter on the seafloor of the Gulf of Mexico. The brighter colors and more negative values on the Delta-14C scale indicate less radiocarbon (14C) and thus more fossil (oil) carbon in the sediments. The SW trajectory of the plume is evident and the results show that the fossil carbon appears to have drifted as far as 150 km away from the oil blowout site which is marked with an x. Fossil carbon inputs are also observed in sediments to the north of the site towards Gulfport. Radiocarbon depleted tissue has been observed in Gulf plankton samples and in oysters from Terrebonne Bay in South Louisiana.

Acknowledgements

We thank the Gulf of Mexico Research Initiative, the Northern Gulf Institute and the Florida Institute of Oceanography for funding this work.
Geochemistry

The dominant rocks of the upper part of the Earth’s mantle (peridotites) are much different in isotopic signature than the basalts (extrusive volcanic rock from melting of the Earth’s mantle) although data suggests that the peridotites heavily contributed to the basalts. The current data identifies the most extreme radiogenic isotopic compositions in all of the ocean mantle, confirming proposed ultra depleted and highly heterogeneous regions. The work will provide information on the degree of melting and age of these regions in the Earth’s crust.

Ultra Depleted Mantle at the Gakkel Ridge Based on Hafnium and Neodymium Isotopes

V. Salters, A. Sachi-Kocher (NHMFL & Florida State Univ., EOAS); H. Dick (Woods Hole Oceanographic Institute)

Introduction

The Gakkel Ridge is one of the slowest spreading ridge segments in the global ridge system with some of the thinnest oceanic crust. In some locations there is little or no evidence for volcanic activity and the oceanic mantle is exposed directly to the ocean floor. This provides an excellent opportunity to investigate the heterogeneity of the oceanic mantle in situ.

Experimental

We have analyzed a number of peridotites from the western end of the Sparsely Magmatic Zone (3° to 28°E) for Hf and Nd isotopic compositions by multi-collector ICP-MS. In addition we analyzed diopsides for major and trace element analysis using the single collector magnetic sector ICP-MS. All analyses were conducted at the NHMFL.

Results and Discussion

The samples (red symbols) we analyzed range to extremely radiogenic isotopic composition; i.e. the most radiogenic in Nd and Hf-isotopic composition of all ocean mantle. All but two samples are more radiogenic in either Nd or Hf than MORB. Four samples lie in the extension of the OIB MORB array with ε_{Nd} up to 23.7 and ε_{Hf} up to 54.6. The remainder of the data falls above the OIB-MORB array and its extension with ε_{Nd} values up to 27.4 and ε_{Hf} values up to 291! This data confirms the ultra depleted nature of the Gakkel Ridge mantle proposed by Stracke et al. and its highly heterogeneous nature as proposed by Liu et al. Since the Hf and Nd system is expected to have correlated fractionations during melting we can add melt back into the peridotites until the Hf and Nd model age coincide. This will provide information on both the degree of melting and the age. Gakkel Ridge peridotites seem to have very little melt extracted from them (<1%) and have model ages that ranges from 2.4Ga to future ages with most between 600Ma and 1.2 Ga.

The Hf and Nd isotopes are best correlated with Sm/Yb whereby high Sm/Yb samples have unradiogenic Hf and Nd. The Cr# of the spinel is relatively low for all the samples (<30), although all samples have a LREE depleted character with Yb(N) between 8 and 3 and La(N) between 0.8 and 0.1.

The Gakkel Ridge basalts form the radiogenic Hf-end of the MORB field (S. Goldstein pers.comm.), and although the peridotites are far out of isotopic equilibrium with the basalts, Hf-Nd systematics indicates that the peridotites have contributed to the basalts. The relatively depleted nature of the peridotites requires that a relatively large amount of peridotite has to contribute to the aggregated basaltic melt. Apart from documenting the heterogeneous nature of the MORB mantle, it also indicates that in addition to MORB-like mantle a far more depleted mantle exists. Based on abyssal peridotite trace element compositions and on melting calculations, these extreme peridotites could have an unusually complicated history, and this might not be the first time they are passing through a ridge melting regime. It is likely that they may represent ancient residual lithosphere. Because these peridotites are already depleted they will contribute little in terms of major elements or incompatible trace elements to the melts. The Hf-Nd isotope variations in MORB, whereby MORB from individual ridge segments form parallel arrays, can also be explained by the existence of a highly depleted component like residual lithosphere: ReLish.

Acknowledgements.

This research was supported by NSF OCE 0930429 to Salters.

REFERENCES

Magnetic Resonance Technique Development

Lithium-ion batteries have been the power sources of choice for portable electronics and are of growing use for large scale devices such as plug-in and hybrid electric vehicles. Solid state NMR spectroscopy has been used as a powerful tool for characterization and development of new electrode materials. The following report presents a new NMR technique developed jointly by scientists at the NHMFL and University of Cambridge for obtaining high-resolution magic-angle spinning spectra of many paramagnetic lithium-ion battery materials. The new technique can average anisotropic paramagnetic broadening up to 1MHz, far beyond any practically achievable sample spinning rate. The technique also solves a general problem solid state NMR at high magnetic fields, that of increasing anisotropic broadening.

Obtaining Isotropic NMR Spectra of Paramagnetic Battery Materials with Large Anisotropic Broadening

I. Hung, Z. Gan (NHMFL); L. Zhou, F. Pourpoint, C.P. Grey (Cambridge)

Introduction

The use of Li-ion batteries as power sources for portable electronic devices such as laptops and cell phones, has grown dramatically. New positive and negative electrodes have been developed during the past 30 years to address issues of stored energy density, charge and discharge rates and service life\(^1,2\) and solid-state \(^{6}\text{Li}\) NMR has played an important role in characterizing these materials and the changes of the Li local environment during charge and discharge processes\(^3\). Many Li-ion battery materials are paramagnetic and their solid-state NMR (ssNMR) spectra are often crowded with overlapping spinning sidebands (ssbs) due to the large anisotropic paramagnetic shift even under very fast magic-angle spinning (MAS). This report presents the use of a magic-angle turning phase-adjusted sideband separation (MATPASS)\(^4,5\) method under fast spinning frequencies to separate ssbs and yield ssNMR spectra as if MAS is infinitely fast\(^6\). This MAT experiment only employs \(\pi/2\)-pulses, providing a broad excitation bandwidth, and is thus suitable for application to paramagnetic lithium battery materials with anisotropy of >1 MHz.

Experimental

Experiments were performed on a 19.6 T superconducting magnet equipped with a Bruker DRX console and a home-built 1.8 mm single-resonance probe at 30-34 kHz MAS.

Results and Discussion

Figure 1a shows a fast MAS (34kHz) spectrum of a cathode material \(\text{Li}_{x}\text{FeSiO}_4\) after four charge-discharge cycles. The spinning is not fast enough to enhance the resolution of the broad signal centered at ~300 ppm (the sharp peaks are from impurities). The MATPASS\(^4,5\) experiment separates the ssbs according to their order (Figure 1d). A subsequent shearing and projection results in an isotropic MAS spectrum.
spectrum without any sidebands, as if the spinning speed is infinitely fast. The expansion around ~300ppm (Figure 1b) reveals that the broad and featureless signal in Figure 1a is actually comprised of multiple isotropic resonances that spread over a range of about 800 ppm (>250 kHz). The result demonstrates that this new NMR technique can be applied for paramagnetic battery materials to resolve lines with width and anisotropy far larger than practically achievable MAS speeds. Fig 1e-g show an application to the 3P nuclei in Li$_3$Fe$_2$(PO$_4$)$_3$ that have even shorter T_1 and T_2 relaxation times than 7Li. Using the 2D MATPASS experiment at a single B_0 field and MAS frequency, three isotropic resonances can be identified in the broad spectrum of Figure 1e (>1.2 MHz), allowing for chemical shift measurement of individual peaks. Previously, multiple B_0 fields and varying MAS frequencies were necessary to resolve the interplay between the effects of sample heating and spinning sideband positions upon change of spinning speed just to identify the peaks form the spinning sidebands. The sideband-less feature of the MATPASS technique should greatly facilitate the use of 3P NMR as an additional probe for the characterization of phosphorus-containing Li-ion battery materials.

Conclusions

It has been shown that isotropic spectra for 7Li and 3P nuclei with very short T_1 and T_2 relaxation times due to paramagnetic shift anisotropy can be obtained using the projection-MATPASS technique.

Acknowledgements

This work has been supported by the National High Magnetic Field Laboratory through Cooperative Agreement (DMR-0084173) with the National Science Foundation and the State of Florida. CPG and LZ acknowledge support from the Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the U.S. DOE, BES under award No. DE-SC0001294. FP was supported by EPSRC and the Supergen consortium.

REFERENCES

Magnetic Resonance Technique Development

This report is interesting in its application of ultrashort TE (UTE) imaging to a novel problem. UTE imaging is generating a tremendous amount of excitement in the imaging community due to its ability to observe at protons with very short TEs typically representing bound water in bone, cartilage, or in this case in solid foams. UTE measurements require special imaging sequences and coils (which do not produce significant background at these short echo times). Whereas the application is of general interest due to the NASA connection, what is of real value is showing that the 900MHz can be used to perform UTE imaging opening up a host of different future user applications.

MRI of Absorbed Water in Solid Foams Using 21.1 T

M. Vanderlaan, M. Seshadri, M. Barrios, S. Van Sciver (NHMFL/Florida State Univ., College of Engineering); J. Fesmire (NASA/KSC); W.W. Brey, V. Schepkin (NHMFL)

Introduction

In a number of practical situations there is a critical need to evaluate the distribution of small amounts of water absorbed throughout a solid foam sample. One of these pertains to Spray On Foam Insulation (SOFI) NCFI 24124, a thermal insulation material used on the liquid hydrogen and oxygen tanks of the Space Shuttle at Kennedy Space Center (KSC). However, several problems including infinitesimal amounts of water and inevitable water binding to the foam makes the MR signal weak especially for high resolution MRI. The 900 MHz Ultra wide bore (UWB) NMR spectrometer provides a unique opportunity to perform this evaluation due to its high MRI sensitivity at 21.1 T and its ability to examine large volume samples. The recent upgrade of the UWB 900 MHz MRI scanner (August, 2010), allows for ultra-short echo time (UTE) 3D MRI performance. The standard MR imaging technique in this case is not suitable, as it will yield a zero signal. Here we report the first 3D MR images of bound water and water content in solid foam NCFI 24124 samples conditioned to match launch pad conditions. Full Paper published in International Journal of Heat and Mass Transfer.

Experimental

Foam samples were launch pad conditioned (LPC) for either 69 hours or 9.5 hours in a rig that subjects one side of the foam to 34 ± 2 °C (mean ± standard deviation) air with a relative humidity greater than 75% with the other side in contact with a cold plate at 77 K. These conditions are similar to those experienced by the foam on the NASA-KSC launch pad. The foam requires low thermal conductivity and durability. However, the cold surface is thought to draw water from the humid ambient air into the insulation, which KSC studies have shown can increase the weight of the insulation by as much as 30%-85%. This water adsorption translates to several thousand additional pounds on the shuttle. A new RF coil was constructed with materials lacking free protons, which dramatically reduced previously noticed background signals.

Results and Discussion

The average unprepared (as received) foam sample mass was 46.5 ± 2.2 mg. The 69-hour LPC samples gained an average 132 mg of water while a 9.5-hour conditioned sample resulted in an average gain of 23 mg. Sections void of water can be seen in 1a as two black bands, known as knit lines, dense areas between foam layers created in the application process. The dimensions of the majority of the cells range from 150-450 μm, and are elongated in the rise direction. Many of the cells near the knit lines decrease in size to less than 50 μm. The experiment has been successfully repeated with a larger RF coil bore of 20 mm.

Conclusions

The capability for ultra short echo time MRI with TE ~ 50 µs is expanding the area of MR imaging analysis which can be performed at the NHMFL. The first experiments demonstrated accumulation of water in the insulation foam and represent an opportunity to perform an evaluation of the new insulation materials. Transitions in the knit lines layering are constrictions in the water flow path and if increased in number, might be used as tools in minimizing water absorption. An overall pore size reduction may also reduce water absorption but the advantages must be balanced with the disadvantages of increased weight in denser foam.
Acknowledgements

Thanks C. Ralph, G. Daspi (Southern Research Institute), P. Gor’kov and A. Blue. MRI studies were supported by NSF Cooperative Agreement No. DMR-0654118, the State of Florida, and the U.S. Department of Energy.

REFERENCES

Biochemistry

Knowing structure and dynamics is essential to understand the functioning of proteins and other bio-molecules. Polenova’s group at U. Delaware uses solid-state NMR to gain atomic-level insight on the structure and dynamics of HIV-1 protein assemblies and their interactions with host proteins and small-molecule inhibitors. They have found that the tubular assemblies of capsid CA protein and capsid-spacer peptide 1 (CA-SP1) of Gag polyprotein from HIV-1 virus yield better spectral resolution than the conical and spherical shaped assemblies. They have obtained high-resolution multi-dimensional spectra of the tubular proteins using the 900MHz field and low-E triple resonance MAS probe, both are important for spectral assignment and dynamics measurement of the 231-residue protein stabilized in high-salt concentration.

- Supported by the MagLab User Collaboration Grants Program

Solid-State NMR Structural and Dynamics Studies of HIV-1 Protein Assemblies Using 21T and Low-E Probe

Y. Han, G. Hou, C. Suiter, T. Polenova (Univ. of Delaware, Dept. of Chemistry & Biochemistry); Z. Gan, W. Brey, I. Hung, P. Gor’kov (NHMFL)

Introduction

Gag polyprotein from HIV-1 virus is responsible for the assembly of virions from infected cells. Gag and its two products, capsid CA protein and capsid-spacer peptide 1 (CA-SP1) are the focus of this research. CA organizes and protects the viral genome by assembling into conical capsids. Following viral entry into the host, CA disassembles to allow release of the viral genetic material into the host cytoplasmic compartment (uncoating). CA and the Gag processing intermediate CA-SP1 have recently become attractive targets of HIV-1 uncoating and capsid maturation inhibitors. Despite the promise of targeting CA maturation and uncoating processes by novel inhibitors, the current research is hampered by lack of understanding of the molecular mechanisms of the maturation and uncoating and of their temporal regulation, and detailed atomic-resolution structural and dynamics information of the assembled Gag, CA, and CA-SP1 is still lacking. The objective of our ongoing work is to gain atomic-level insight on structure and dynamics of these HIV-1 protein assemblies and their interactions with host proteins and small-molecule inhibitors through state-of-the-art solid-state NMR spectroscopy.

Experimental

Solid-state NMR spectra were acquired at 21.1 T (900 MHz) on the ultra-wide bore 105 mm NMR magnet, outfitted with a 3.2 mm Low-E triple-resonance HXY probe developed and built at NHMFL. 2D MAS homo- and heteronuclear correlation spectra (DARR, NCA, and NCACX) were acquired on U-13C,15N-labeled CA and CA-SP1 assemblies of tubular morphology. All spectra were processed in NMRPipe and analyzed in Sparky.

Results and Discussion

In vivo, the 231-residue CA protein assembles into cone-like capsid structures containing about 1500 copies of the protein and enclosing the viral RNA genome. Significant heterogeneity in shape and in size of CA capsids has been observed in mature HIV-1 virions. In vitro, both CA and CA-SP1 proteins exhibit structural polymorphism, and assemblies of conical, tubular, and spherical shapes can be produced. We have established the conditions for the assembly of CA into the main three morphologies for solid-state NMR spectroscopy, have assigned two thirds of the residues and characterized the secondary structure of the conical CA assembly. Despite the generally high resolution of the 900 MHz spectra of conical capsids, lines are somewhat broader than in microcrystalline proteins, making it challeng-
ing to perform detailed structural characterization in U-\(^{13}\)C,\(^{15}\)N isotopically enriched protein. We have turned our attention to tubular assemblies of the above proteins and discovered that those yield lines as narrow as those in microcrystalline proteins. Most recently, thanks to the enhanced-design Low-E triple-resonance MAS probe developed at NHMFL we have collected excellent-quality homo- and heteronuclear 2D correlation spectra of CA and CA-SP1 assemblies (Figure 1) at 21.1 T. With these data in hand, we expect to gain detailed structural and dynamics information of CA alone and interacting with host cell proteins and small-molecule inhibitors.

Conclusions

Excellent-quality 2D MAS NMR spectra were collected at 21.1 T for tubular CA and CA-SP1 assemblies that will permit detailed structural and dynamics characterization of HIV-1 protein assemblies.

Acknowledgements

This work was supported by the National Institute of General Medical Sciences (NIH Grant P50GM082251) and is a contribution from the Pittsburgh Center for HIV Protein Interactions.

REFERENCES

Biochemistry

The cell membrane is a unique environment made up of >1,000 different lipid species, many proteins, and microdomains. Structural information about proteins in this natural environment is scarce. In this report, the authors demonstrate the feasibility of characterizing the structure of the transmembrane domain of a human APP binding protein in native E. coli membranes by using solid-state magic-angle spinning NMR.

Structural Analysis of a Recombinant Protein in Native *Escherichia coli* Membranes Using Low-E Probe

R. Fu (NHMFL); X. S. Wang, R.L. Gill, F. Tian (Pennsylvania State Univ.); C. Li (Chinese Academy of Sciences); G.J. Pielak (Univ. of North Carolina)

Introduction

Cellular membranes are comprised of a diverse set of lipids (>1,000 different lipid species), and exhibit lateral heterogeneity (e.g. lipid rafts, lipid microdomains), transbilayer asymmetry, chemical and electrical gradients, dynamics, and various shapes. Furthermore, biological membranes are crowded and contain as much protein as they do lipid. Although the unique lipid environment is a major determinant of membrane protein conformation and function, information about protein structure in biological environment is scarce. Here, we demonstrate the feasibility of characterizing the structure of the transmembrane domain (TM) of a human APP binding protein, LR11, in situ in E. coli membranes by using solid-state magic-angle spinning (MAS) NMR.

Experimental

The preparation of LR11 TM in E. coli membranes has been described. NMR spectra were collected on a NHMFL 600 MHz spectrometer with a Bruker 4 mm or a homebuilt 3.2 mm low-E MAS probe.

Results and Discussion

Using 13C-13C PARIS data (Figure 1a) collected with different mixing times on a sample of LR11 TM in native E. coli membranes, we have readily assigned 12 out of 23 residues of the LR11 TM. All assigned residues show characteristic secondary shifts of an α-helix and are in agreement with the secondary shifts of LR11 TM in DPC micelles (Figure 1b) except for residue Ala2156. This residue is near the C-terminus of the predicted TM domain and resides in the membrane-solution interface region, where there are substantial differences between bilayers and micelles and where structural discrepancy likely occurs.

Acknowledgements

We are grateful for financial supports from the National Institutes of Health (5R01GM081793-03 and 5DP10D783), the National Science Foundation (MCB1051819) and the Penn State University College of Medicine and the National Science Foundation of China (21075134).

REFERENCES

CHAPTER 2: LIFE SCIENCES

Biochemistry

The most common hereditary peripheral neuropathies are the axonal form of Charcot–Marie-Tooth (CMT) diseases caused by mutant proteins which gain new functions due to their altered protein structure. Despite this, previous crystal structures showed little conformational difference between dimeric wild-type and CMT-causing mutant proteins. In this report different mutant proteins were investigated in solution by hydrogen-deuterium exchange (monitored by mass spectrometry) and small-angle X-ray scattering to uncover structural changes that exposed the same conformational cleft that is mostly buried in the wild-type protein.

Dispersed Disease-Causing Neomorphic Mutations on a Single Protein Promote the Same Localized Conformational Opening

W. He, Y.E. Chong, M. Gin, X-L Yang (Scripps, Biochemistry); H-M Zhang (NHMFL, Biochemistry); A.G. Marshall (Florida State Univ., NHMFL, Chemistry)

Results and Discussion

The question of how dispersed mutations in one protein engender the same gain-of-function phenotype is of great interest. Here we focus on mutations in glycyl-tRNA synthetase (GlyRS) that cause an axonal form of Charcot–Marie-Tooth (CMT) diseases, the most common hereditary peripheral neuropathies. Because the disease phenotype is dominant, and not correlated with defects in the role of GlyRS in protein synthesis, the mutant proteins are considered to be neomorphs that gain new functions from altered protein structure. Given that previous crystal structures showed little conformational difference between dimeric wild-type and CMT-causing mutant GlyRSs, the mutant proteins were investigated in solution by hydrogen-deuterium exchange (monitored by mass spectrometry) and small-angle X-ray scattering to uncover structural changes that could be suppressed by crystal packing interactions. Significantly, each of five spatially dispersed mutations induced the same conformational opening of a consensus area that is mostly buried in the wild-type protein (see Figure 1) The identified neomorphic surface thus a candidate for making CMT-associated pathological interactions, and a target for disease correction. Additional results showed that a helix-turn-helix WHEP domain that was appended to GlyRS in metazoans can regulate the neomorphic structural change, and that the gain of function of the CMT mutants might be due to the loss of function of the WHEP domain as a regulator. Overall, the results demonstrate how spatially dispersed and seemingly unrelated mutations can perpetrate the same localized effect on a protein.

Acknowledgements

We thank Professor Paul Schimmel for valuable scientific insight and help on the manuscript and Professor Mark R. Emmett for helpful discussion of HDX experiments. This work is supported by National Institutes of Health Grants GM 088278, GM 78359, and U54 RR025204; National Science Foundation Grant DMR-0654118; and the state of Florida.

REFERENCES

Biology

Acquired Immunodeficiency Syndrome (AIDS) is a world-wide epidemic caused by HIV-1. Although numerous pharmaceuticals that are inhibitors against viral replication are effective in controlling AIDS, there is currently no cure or vaccine to prevent AIDS. Towards the goal of developing a vaccine for AIDS, the structural organization of viral envelope proteins within membranes was determined. These structural hierarchies form the basis of vaccine development for the prevention of virus entry into host cells.

- Supported by the MagLab User Collaboration Grants Program

Antibody-Mediated Mechanics on a Membrane-Embedded HIV gp41 Segment by EPR

L. Song (NHMFL); M. Kim, Z.-Y.J. Sun, G. Wagner, E.L. Reinherz (Harvard Med. School); G. Ofek, P.D. Kwong (NIH, NIAID)

Introduction

A vaccine capable of stimulating protective anti-viral antibody responses is needed to curtail the global Acquired Immunodeficiency Syndrome (AIDS) epidemic caused by HIV-1. Broadly neutralizing antibodies (BNAbs) such as 2F5 are directed against the HIV-1 gp41 membrane proximal external region (MPER) and recognize well-defined linear core sequences1. How 2F5 interacts with its lipid-embedded epitopes and mediate anti-viral activity is unclear. Here, site-directed spin labeling and electron paramagnetic resonance spectroscopy (SDSL-EPR) were used to define 2F5 induced conformational changes in the MPER relative to the membrane, and the effect of key residue mutations.

Results and Discussion

EPR was used to determine membrane immersion depth changes of spin-labeled MPER residues upon wild type (wt) and mutant 2F5 Fabs binding. 2F5 wt lifts deeply buried residue L669R1 and W670R1 from the acyl chain region of lipid into the aqueous phase and the head group region, respectively (Figure 1A, only W670R1 is shown). In contrast to wt 2F5, 2F5 mutants (F100BS, L100AS and I100FS) - induced immersion depth changes of L669R1 and W670R1 were attenuated. The reduced immersion depth changes by 2F5 mutants are correlated well with their decreased neutralization potency comparing to wild type 2F5 (not shown). Of note, comparable EPR mobility spectra changes found for L669R1 and W670R1 indicate the presence of similar MPER conformations at the antibody binding interface for the wt and three 2F5m Fabs (Figure 1B). These results have been published in *Nature Struct. Mol. Biol.*2.

Conclusions

The results suggest that mutations at different positions in 2F5 antibody differentially affect the degree of reorientation of the N-helix in the MPER. The apex of the 2F5 CDRH3 loop, including F100B, L100A and I100F, is critical for mediating MPER reorientation and epitope extraction from membrane. The results have important implications for structure-aided HIV vaccine design.

Acknowledgements

This work was supported by NIH grants RO1AI84785 / U19AI91693 (to E.L.R.), a grant from the Gates Foundation (to E.L.R.), and an UCGP grant 5080 (to L.S.).

REFERENCES

During cancer progression, especially after drug interventions, tumors develop new mechanisms permitting them to resist chemotherapeutic interventions. Consequently, there is a crucial need for a method to detect changes in tumor resistance. This study represents a discovery that sodium MRI has the capability to promptly and noninvasively detect changes in drug resistance prior to the initiation of tumor therapy. Thus, the method can predict and, therefore, avoid implementation of unsuccessful tumor therapies.

Introduction

Cancer progression, especially drug intervention, triggers tumors’ cellular mechanisms permitting them to resist chemotherapeutic interventions. The same type of tumor in the same anatomical place can have a wide range of resistance to therapy. Unfortunately, resistance is usually diagnosed long after drug administration by noting changes in tumor volume. To formulate prompt and individualized treatments, it is important to evaluate tumor resistance before therapy. Mitochondria play a central role in energy metabolism as well as apoptosis and are directly associated with the changes in tumor resistance. We hypothesize that a shift to more efficient energy metabolism in resistant tumors is affecting tumor sodium homeostasis. In this way sodium MRI (Figure 1, left) has a unique potential to detect changes in tumor resistance. It is of the utmost importance that alterations in tumor resistance can be detected noninvasively and quickly prior to treatments.

Experimental

Six male CDF rats (weight ~ 150 g) were implanted intra-cranially with two types of 9L gliosarcoma cells. Later, in 10 days, the MRI experiments were conducted at the NHMFL 21.1 T MRI scanner using an NHMFL-designed double tuned sodium/proton in vivo MRI probe. Sodium 3D back-projection MRI scans with resolution of 0.5x0.5x0.5 mm, FID acquisition delay ~0.1 ms and scan time of 27 min were acquired using the Bruker Avance III console. All experiments were conducted according to the animal protocols approved by The Florida State University ACUC.

Results and Discussion

Sulforodamine assay of the resistant glioma cells (Fig. 1, center) performed before tumor implantation to animal showed a carmustine resistance of 24.7 µM, while for naïve glioma it was 7.8 µM. In vivo, sodium concentration in tumor from resistant tumor cells was 127% relative to a normal contra-lateral brain, while in tumor from the naïve glioma it was 173% (Fig. 1, right).

Conclusions

Changes in tumor resistance can be sensitively detected by sodium MRI and tumor response can be predicted prior to treatments, thus helping to avoid unsuccessful therapies. The suggested approach is based on the energy status of tumors, indicating it may have a predictive capability for different chemotherapeutic drugs beyond carmustine used in this study. The finding warrants further investigation and confirmation for other tumor types.

Acknowledgements

The in vivo rodent studies were supported by NIH Grant R21 CA119177. Special thanks to A. Blue, R. Desilets, M. Elumalai and J. Kitchen for their valuable support during this project.

REFERENCES

Two common forms of cognitive disorders associated with aging that induce dementia are Alzheimer’s disease (AD) and diffuse Lewy Body disorder (DLBD). Currently, confirmation of the disease pathology is diagnosed conclusively postmortem. Here non-invasive MRI methods based upon the iron content are being developed that can differentiate between healthy and diseased brain tissues.

Supported by the MagLab User Collaboration Grants Program

High Resolution MRI at 21.1 T of the Hippocampus and Temporal Lobe White Matter in the Differential Classification of Alzheimer’s Disease and Diffuse Lewy Body Disorder

P. Foroutan, S.C. Grant (NHMFL/Florida State Univ., Chemical & Biomedical Eng.); M.E. Murray, D.W. Dickson (Mayo Clinic, Pathology); S. Fujioka, K.J. Schweitzer, Z.K. Wszolek (Mayo Clinic, Neurology)

Introduction

The two most common forms of cognitive disorders that induce dementia are Alzheimer’s disease (AD) and diffuse Lewy Body disorder (DLBD). Although these conditions differ histopathologically such that AD is associated with amyloid (Aβ) plaques and neurofibrillary tangles while DLBD is an α-synucleinopathy, clinical similarities make it difficult to distinguish between them. In pathological animal and human tissue, Aβ plaques appear to coincide with iron-induced hypointensities observed in T2- and T2*-weighted MR images. Similarly, the presence of Lewy bodies, or rather α-synuclein, also has been linked to increases in iron content.

Experimental

Fixed postmortem specimens harvested from sex- and age-matched patients displaying AD (n=13) and DLBD (n=7) were compared to healthy subjects (n=6). MR data were acquired using a 21.1-T, ultra-widebore (105-mm) vertical magnet. Utilizing a 33-mm birdcage coil, 3D Fast Low Angle Shot (FLASH) images were acquired at an isotropic resolution of 50 μm over 4.3 hours at 14 °C. T2- and T2*-weighted multiple gradient recalled echo (GRE) and T2-weighted spin-echo (SE) sequences were acquired over a range of echo times to generate relaxation maps. Multi-slice diffusion-weighted spin echo (DWSE) sequences with four diffusion weightings (b values = 0-1500 s/mm²) also were acquired. Separate manually drawn regions of interest (ROIs) were traced over the temporal lobe white matter (TLWM), parahippocampal gyrus (PHCG), subiculum (Sub), CA1 and the entire hippocampus (HC). Histology included stains for iron (Prussian Blue, PB) and ferritin-L. Neural density and vacuolation were quantified with hematoxylin & eosin (H&E).

Results and Discussion

High resolution datasets, parametric relaxation maps and regional quantification of T2 and T2* provided significant distinctions between healthy and pathological specimens diagnosed with AD or DLBD. With respect to T2 and T2*, the largest difference from
controls and AD was identified TLWM while DLBD showed the largest impact on the PHCG. This data suggests that lower T$_2$ and T$_2^*$ times are correlated with chronic DLBD rather than chronic AD or control sections while increased relaxation values and ADC coincide with chronic AD pathology. H&E for vacuolization indicated a larger loss of cells and neuropils in AD compared to both controls and DLBD. While T$_2$ times correlated with vacuolation in TLWM, PHCG and CA1 and inversely with ferritin in TLWM and CA1, neural count did not correlate with either T$_2$ or T$_2^*$.

Conclusions

This work suggests that it is possible to differentiate quantitatively between neurologically healthy brain tissue and pathological specimens diagnosed with AD or DLBD. Though histological findings correlate well with relaxation, relatively low %PB and high %Fer detected in AD and DLBD cases may indicate chronic brain iron deficiencies.

Acknowledgements

Funding was provided by the NSF (NHMFL User Collaborations Grant Program to SCG).

REFERENCES

The strength of the Magnet Lab’s User Program is built around the synergies of the highest field magnets, unique instrumentation, and exceptional support from highly qualified faculty and staff of the laboratory’s seven user facilities—DC Field, Pulsed Field, High B/T, NMR-MRI @ FSU, NMR-MRI @ UF (AMRIS), EMR, ICR, and the nascent Geochemistry facility. In this chapter, each facility presents information about its research capabilities, developments, plans, productivity, and efforts to build the user community during 2011.

The Magnet Lab was extremely pleased to welcome requests for magnet time from 81 new principal investigators in 2011: 25 in the DC Field Facility; 14 in the Pulsed Field; 1 in the High B/T; 6 in NMR-MRI@FSU; 7 in NMR-MRI@UF; 13 in EMR; and 15 in ICR. Some “frequently-asked-for” lab-wide user statistics are presented in Tables 1 and 2; details for each facility are presented in Appendix A.
1. The laboratory reports seven user facilities (DC Field, Pulsed Field, High B/T, NMR-MRI @ FSU, NMR-MRI @ UF [AMRIS], ICR, EMR) and the Geochemistry Facility, which is affiliated. A user is a member of a research group that is allocated magnet time. The user does not have to be “on site” for the experiment. Consequently, a researcher who sends samples for analysis; a scientist who uses new lab technologies to conduct experiments remotely; or a PI who sends students to the Magnet Lab, are all considered users.

2. NHMFL-Affiliated users are defined as any one in the lab’s personnel system [i.e. on Web site/directory], even if they travel to another site.

Local users are defined as any non-NHMFL-affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site.

The sum of NHMFL-Affiliated and Local users equals what was formerly referred to as “Internal Investigators”.

3. In addition to external users, all users with primary affiliations at FSU, UF, or FAMU are reported in this category, even if they are also NHMFL associates.

4. In addition to external users, users with primary affiliations at NHMFL/LANL are reported in this category.

5. Four columns of users (university, industry, national lab, non-U.S.) will equal the Total Number of Users.
DC Field Facility

2011 statistics on DC Field users, proposals, and magnet usage are presented in Appendix A.

The DC Field facility at the Magnet Lab’s headquarters in Tallahassee continues to provide the user community with the highest and quietest slowly varying magnetic fields in the world. The magnets are coupled with state-of-the-art instrumentation resulting in a suite of powerful measurement environments for research. Expert experimental staff members provide users with scientific and technical support while using the DC facilities.

Facility Developments
A large number of improvements to the DC Field Facility have been in development for some time and are beginning to come to fruition. The first of these is the 25 T Split-Bore magnet, a revolutionary magnet with four large ports at field center through the mid-plane of the magnet where the stresses and temperatures are the highest. These ports, 11.5 degrees in the vertical direction and 45 degrees in the horizontal extending from a 5 mm volume at field center, are far larger than any similar magnet in the world. In addition to having larger access ports than any other split-bore magnet, its maximum field is significantly higher. In addition, this is our first 28 MW resistive magnet that makes full use of our upgraded power supplies. The Split-Bore Magnet is truly an amazing engineering achievement.

An initial set of experiments has already been performed in this system (see the Science Productivity section below) and experimentalists are already planning an ever-expanding suite of experiments that this system will make possible. To fully utilize this magnet, a unique variable temperature cryostat has been purchased that uses the magnet bore as part of the dewar vacuum space in order to eliminate the need for optical windows in high fields and simultaneously maximize the sample space. This cryostat is top-loading and is unlike any such system built before. This cryostat has been delivered, tested,

Florida-bitter and Hybrid Magnets

<table>
<thead>
<tr>
<th>Field, Bore, (Homogeneity)</th>
<th>Power (MW)</th>
<th>Supported Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 T, 32 mm, (25 ppm/mm)</td>
<td>29.3</td>
<td>Magneto-optics – ultra-violet through far infrared; Magnetization; Specific heat; Transport – DC to microwaves; Magnetostriiction; High Pressure; Temperatures from 30 mK to 1500 K; Dependence of optical and transport properties on field, orientation, etc.; Materials processing; Wire, cable, and coil testing. Low to medium resolution NMR, EMR, and sub/millimeter wave spectroscopy.</td>
</tr>
<tr>
<td>35 T, 32 mm</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>31 T, 32 mm to 50 mm</td>
<td>18.4</td>
<td></td>
</tr>
<tr>
<td>29 T, 32 mm (~5 ppm/mm)</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td>20 T, 195 mm</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>25 T, 52 mm, (1 ppm/mm)</td>
<td>18.6</td>
<td></td>
</tr>
<tr>
<td>25 T, 32 mm bore (with optical access ports)</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

Superconducting Magnets

<table>
<thead>
<tr>
<th>Field (T), Bore (mm)</th>
<th>Sample Temperature</th>
<th>Supported Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/20 T, 52 mm</td>
<td>20 mK – 2 K</td>
<td>Magneto-optics – ultra-violet through far infrared; Magnetization; Specific heat; Transport – DC to microwaves; Magnetostriiction; High pressure; Temperatures from 20 mK to 300 K; Dependence of optical and transport properties on field, orientation, etc. Low to medium resolution NMR, EMR, and sub/millimeter wave spectroscopy.</td>
</tr>
<tr>
<td>18/20 T, 52 mm</td>
<td>0.3 K – 300 K</td>
<td></td>
</tr>
<tr>
<td>17.5 T, 47mm</td>
<td>4 K - 300 K</td>
<td></td>
</tr>
<tr>
<td>17.5 T, 34 mm, (50 ppm/cm)</td>
<td>0.3 K – 300 K</td>
<td></td>
</tr>
</tbody>
</table>

1 A coil for modulating the magnetic field and a coil for superimposing a gradient on the center portion of the main field are wound on 32 mm bore tubes.
2 Higher homogeneity magnet for magnetic resonance measurements.
3 Optical ports at field center with 4 ports each 11.4° vertical x 45° horizontal taken off of a 5 mm sample space.
and meets specifications. To support this endeavor and the rest of the optical equipment, a special c-shaped optical table has been ordered that will surround the magnet. This cell will eventually be fitted with walls and a ceiling to create a dark, clean, laser-safe space around the magnet. These walls will be configurable to allow other experimentalists to use the magnet system as well. In short this world record magnet will soon have the instrumentation and environment to allow measurements that could not be performed elsewhere.

Less exciting, but no less important, is the addition of a fifth cooling water pump for the resistive magnets that has a larger pumping capacity than the other four. Prior to this addition, running a 28 MW magnet required the use of more than two of our pumps and both of our cooling water circuits. The upgraded pumping capability and associated plumbing upgrades will allow us to run a 28 MW magnet on a single cooling loop while still running another full load on the second cooling loop. Additional piping and valves provide flexibility in connecting pumps to the cooling loops and a measure of redundancy if a pump should fail. An additional benefit of this upgrade is that in the future another resistive magnet can be run to half field while the hybrid magnet is running. Thus this upgrade will provide more flexibility and run time for our users.

For several years, we have been planning a very large improvement to our cryogenic infrastructure to meet the rising demand of liquid helium and to maximize our recovery efforts. This year the heart of these investments has been delivered, tested, and is making liquid. A custom Linde LR280 turbine liquefier was delivered that makes over 200 l/hr of liquid helium when running without additional heat load. This liquefier exceeded its specified cooling power of 750 W at 4.2K, making 950 W as installed. In addition a large capacity purifier has been delivered and is currently being installed. A cryogenic central distribution box has also been ordered with delivery scheduled for the 2nd quarter of 2012. This central distribution box will allow the new liquefier to serve the 45 T hybrid, the series-connected hybrid, and the liquid helium needs of the rest of the laboratory. The improvements coupled with upgrades in our recovery and storage systems will make our delivery of helium to the MagLab much more reliable and efficient while simultaneously making operation of large cryogenic magnets such as the hybrid and the coming series-connected hybrid more robust.

Finally, in Cell 9, the top-loading cryostat has had its experimental probes completely replaced. This system is the first of the top loading cryostats for the resistive magnets used here. The wiring on its existing probes had begun to degrade and because of their design could not be replaced without cutting the probes apart. Our staff designed new probes with titanium shafts that are much more robust and user friendly than the old stainless steel probe shafts. The probe heads feature multiple ports allowing specialty wires or coax to be easily inserted by users without replacing or damaging the existing wiring. These new probes will provide our users with improved experimental capabilities.

Facility Plans

A new top-loading cryogenic system that is optimized for the 45 T hybrid magnet was ordered last year and has recently been delivered. Initial testing is still underway, but preliminary tests are very positive, and we expect that this system will perform as good as or better than the top loading cryostats in Cell 12 (35 T, 32 mm bore) and Cell 9 (31 T, 50 mm bore). We expect that this system will be available for users in the summer of 2012.

Work on the Split-Bore magnet cell will continue to move forward as mentioned above. In addition to the cryostat and optical tables, additional instrumentation will be purchased to perform new experiments adding to the capabilities of this system. An MRI will be submitted with PIs Steve McGill (NHMFL) and Madalina Furis (University of Vermont) to fund the purchase and development of some of these capabilities.

In addition, during the calendar year 2012 we will push our low temperature calibration effort forward to improve our ability to provide calibrated thermometers to high fields. We are currently able to calibrate thermometers to the PLTS-2000 standard. Extending calibrations to high fields is very difficult and requires many checks to ensure that one is not introducing errors with the addition of magnetic field to the experiment. We will continue on our past work and provide the time and resources to make this effort a higher priority.

Science Productivity

As mentioned above the Split-Bore magnet has raised the bar for scientific possibilities in magneto-optics. The first of these experiments was run at room temperature by the group of Gleeson and...
Sprunt at Kent State on liquid crystals. In this experiment, scattering at different angles could be collected simultaneously and correlated to determine structural changes in the crystals. It is clear from the graphs in Figure 1 that two normal modes, which are separate at low fields, are combined at high fields. These measurements will provide the ability to extract key geometric factors and viscosity coefficients.

For many years Quantum Hall Effect research has been a large part of the research effort in high magnetic field facilities. Recently, graphene has entered the scientific arena as a new type of two-dimensional electron gas system with exciting new science and technical potentials. Following closely on graphene’s heels has been the class of materials that exhibit conducting surfaces due to topological effects or Topological Insulators. Very recently a two-dimensional electron gas system formed at the interface of the oxide insulators SrTiO$_3$ and LaAlO$_3$ has been studied by a number of scientists including some NHMFL users. The group of Goldhaber-Gordon at Stanford has created a 2DEG on SrTiO$_3$ that can be controlled with a gate electrode via the application of a surface gel. Very nice high-field work at the MagLab demonstrated negative magnetoresistance as a function of gate voltage and temperature (see Figure 2).

Progress on STEM and Building the User Community

The DC Field Facility continued to be oversubscribed in 2011 as can be seen the usage tables in Appendix A. In spite of this oversubscription, however, the DC facility has made bringing new investigators into the MagLab a priority. We are continuing our efforts to reach out wherever possible in order to expand our user program and enable principal investigators from backgrounds that are underrepresented in the scientific community. In particular, the NHMFL sponsored a booth at the APS March Meeting and also the annual meeting of the National Society of Black Physicists / National Society of Hispanic Physicists to advertise our capabilities and opportunities.

In 2011 the DC Field Facility continued to attract new researchers. Appendix A, Table 8 shows we attracted proposals from 25 new PIs: 16 received time in 2011 and 9 more are scheduled to get time in 2012. In addition to the 21 new PI’s that we reported last year, there were an additional 11 that applied for time in 2010 and received time in 2011. These new PI’s came from institutions as varied as Cambridge University (UK), Peking University (China), Massachusetts Institute of Technology, and Morehouse College. Of these new users, two were minorities and one was a female.

FIGURE 2. Users from Stanford University created a 2DEG on SrTiO$_3$ and demonstrated negative magnetoresistance as a function of gate voltage and temperature.
The Magnet Lab 2011 Annual Report

CHAPTER 3: USER FACILITIES

Pulsed Field Facility

2011 statistics on Pulsed Field users, proposals, and magnet usage are presented in Appendix A.

The National High Magnetic Field Laboratory - Pulsed Field Facility (NHMFL-PFF) is located in Los Alamos, New Mexico, at the Los Alamos National Laboratory (LANL) along with two other world class user programs. The center for Integrated Nano Technology (CINT) and the Los Alamos Neutron Science Center (LANSCE).

The NHMFL-PFF utilizes LANL and U.S. Department of Energy (DOE) owned equipment and resources to provide world record pulsed magnetic fields to users from the scientific and engineering community worldwide.

The pulsed field users program is engineered to provide researchers with a balance of the highest research magnetic fields and robust scientific diagnostics specifically designed to operate in pulsed magnets. The connection with the DC Field Facility is strong and complementary in expertise.

Although achieving the highest research magnetic fields possible is a fundamental competency at the NHMFL-PFF, we also strive to create the very best high-field research environment possible and to provide users with support from the world’s leading experts in pulsed magnet science. All of the user support scientists are active researchers and collaborate with multiple users per year.

A fully multiplexed and computer controlled, 6-position 4.0 mega-Joule (32 mF @ 16 kV) capacitor bank system is at the heart of the short pulse magnet activities. Many thousands of shots are fired for the users program, which accommodates approximately 150 different users each year.

The LANL/DOE owned 1.4GW generator is unique in the world and provides users with the highest non-destructive magnetic fields available.

The magnets available for users at the NHMFL-PFF are presented in the table below.

Capacitor-Bank-Driven Magnets

<table>
<thead>
<tr>
<th>Field (T), Duration, Bore (mm)</th>
<th>Supported Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell 1: 65 T Short Pulse, 25 msec, 15 mm Ultra low noise</td>
<td>Magneto-optics (IR through UV), magnetization, and magneto-transport from 350 mK to 300 K. Pressure from 10 kbar typical, up to 100 kbar. GHz conductivity, MHz conductivity, Pulse Echo Ultra-sound spectroscopy, IR & FIR transmission in the Single Turn Magnet. Specific heat capability in 60 T Long Pulse. Dilatometry up to 95T.</td>
</tr>
<tr>
<td>Cell 2: 65 T Short Pulse, 25 msec, 15 mm Rapid cool design</td>
<td></td>
</tr>
<tr>
<td>Cell 3: 65 T Short Pulse, 25 msec, 15 mm Ultra low noise</td>
<td></td>
</tr>
<tr>
<td>Cell 4: 65 T Short Pulse, 25 msec, 15 mm Rapid cool design</td>
<td></td>
</tr>
<tr>
<td>Cell 294: Development test cell</td>
<td></td>
</tr>
<tr>
<td>60 T Long Pulse Magnet, ~3 sec, 32 mm</td>
<td></td>
</tr>
<tr>
<td>95 T Multi-shot, 10 msec, 10 mm / 85T Multi-Shot, 10 msec, 15 mm</td>
<td></td>
</tr>
<tr>
<td>Single Turn (to 240 T so far), 0.06 msec, 10 mm</td>
<td></td>
</tr>
</tbody>
</table>

Superconducting Magnets

<table>
<thead>
<tr>
<th>Field (T), Bore (mm)</th>
<th>Supported Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 T magnet, 52 mm</td>
<td>Same as pulsed fields, plus thermal-expansion, specific heat, and 20 mK to 600 K temperatures. Heat Capacity, THz Resistivity, Heat Capacity, Magnetometry.</td>
</tr>
<tr>
<td>15/17 T magnet, 52 mm</td>
<td></td>
</tr>
<tr>
<td>14 T-PPMS magnet</td>
<td></td>
</tr>
</tbody>
</table>

62 The Magnet Lab 2011 Annual Report
Facility Developments
In 2011 the PFF has been focused on testing of the second generation of inserts for the 100 T multi shot magnet.

The 95 T multi shot magnet with a second generation 10mm bore insert was tested to 97.4 T in August 2011. The user program will utilize this magnet routinely to 92 T with 95 T shots being available for exceptional science-based cases.

Installation of the first pulse tube liquefier was completed in May 2011. The liquefier produces ~ 100 liters of liquid helium per week. All the pulsed magnet systems are connected to a recovery bag that feeds the liquefier.

The 20 T superconducting magnet system with an actively cooled helium reservoir was purchased in 2010 was installed and tested successfully to 20 T and is now available for users. The system has a top loading He³ insert and a bottom loading vacuum or mixture dilution refrigerator. The magnet also has a modulation/gradient coil set available for users.

Science Productivity
To date 48 peer reviewed publications and 14 presentations and posters have been reported for 2011.

• Microstrain-Sensitivity Magnetostriiction of SrCu₂(BO₃)₂ to 97.4 Tesla

 R. Daou (HLD, Dresden), S. Crooker (LANL, NHMFL), F. Weickert (LANL, CMMS), A. Uchida (LANL, NHMFL), H.A. Dabkowska (McMaster, Physics), B.D. Gaulin (McMaster, Physics), M. Jaime (LANL, NHMFL)

 The orthogonal-dimer geometry of the Shastry-Sutherland lattice and the ratio of next-nearest to nearest neighbor exchange interactions between the spin 1/2 Cu²⁺ ions, J₂/J₁ ~ 0.62 (J₁ = 74K), make SrCu₂(BO₃)₂ a paradigm of frustrated quantum magnetism, where an external magnetic field can be used to induce magnetic texture. The strength of required magnetic fields has until now prevented, however, the unambiguous observation of magnetization fractions beyond 1/3 of saturation.

Here the users report microstrain-sensitivity magnetostriiction (MS) data obtained for a single crystal sample of SrCu₂(BO₃)₂ in pulsed magnetic fields to 97.4 T using a recently developed fiber Bragg gratings (FBG) technique. The magnetostriiction was measured with the magnetic field H//c-crystallographic axis (Figure 3) and with H⊥c-axis (not shown) at different temperatures down to T = 0.5K. We found a remarkable correspondence between magnetostriiction and magnetization vs. field data, that confirms previously discussed magnetic texture following the series 1/n with n = 3, 4,.. 9 in SrCu₂(BO₃)₂. The users also found two new features at μ₀H = 74 T and 82 T that they attribute to superstructure corresponding to 2/5 and 1/2 (n=2) of magnetization saturation respectively.

• Superconducting Critical Current Measurements in Pulsed Magnets

 Philip J.W. Moll, Nikolai D. Zhigadlo, Janusz Karpinski, Bertram Batlogg

 (Laboratory for Solid State Physics, ETH Zurich, Switzerland), Fedor F. Balakirev

 (LANL)

 High temperature superconductors show great promise for real world applications compared to existing conventional low-temperature superconductors and resistive conductors. It is particularly important for the development of superconducting magnets to know their critical current (j_c) capacity in high field regime that is projected to exceed the maximum field available in DC magnets, making it imperative to expand j_c measurements to pulse magnet systems. Measurements of critical current in single crystals of high temperature superconductor using pulsed magnetic fields up to 95 T are tricky due to short time scale, fast field sweep rate and sheer absolute current values in restricted sample space. (See Figures 4 and 5.)

• Multiple Quantum Oscillation Frequencies from Nodal Pocket in Underdoped Cuprates

 S.E. Sebastian, G.G. Lonzarich

 (U. of Cambridge, Physics), C.H. Mielke, N. Harrison (LANL); R. Liang, W.N. Hardy, D.A. Bonn

 (LANL, NHMFL)
Discerning the electronic structure of the underdoped cuprates poses a pressing conundrum. Among key questions to be addressed are the issue of whether the electronic structure comprises multiple pockets, and whether any of these are located at the antinodal region of the Brillouin zone where photoemission experiments reveal a significant gap in density of states at the Fermi Energy. (See Figure 6.)

Facility Plans

- Installation of the Linde helium liquefier will commence in the summer of 2012 and should be complete by the beginning of 2013.
- Winding of the next generation of 100 T multishot outsert coils will begin in 2012.
- Development of the next generation short pulse magnets will begin utilizing *Los Alamos duplex technology*.

Progress on STEM and building the user community

The NHMFL-PFF provided magnet time for 144 distinct experiments in 2011, with 56 different PIs, 14 of whom were new user PIs.

Several students from underrepresented groups were involved in the program this year providing mutual benefits to the students and the PFF mentors. Four of these students were from the Materials Development Institute funded by LANL.

Travel support may be granted to the new users, which has been helpful in growing the new user base considering the relatively remote location of the PFF in Los Alamos.

PFF staff members continue to make considerable efforts toward outreach. In 2011 the third summer school was organized by Albert Migliori and Eric Palm and held at the DC facility in Tallahassee. The school, which included both lectures and hands-on practicals, helped new users and students understand the complexity of conducting experiments in all of the Magnet Lab facilities. Many scientists from the NHMFL-PFF gave their time to teach at this event.

During the year, the PFF has hosted tours of the facility for over 500 people, including students from the Northern New Mexico Pueblo school and the underrepresented college science program at New Mexico State University.

(A. of British Columbia, Physics)
High B/T Facility

2011 statistics on High B/T users, proposals, and magnet usage are presented in Appendix A.

The High B/T Facility provides users with access to a unique combination of high magnetic fields (up to 16 T) and ultra-low temperatures (down to 0.04 mK) simultaneously. Two nuclear demagnetization stages are available, one using PrNi$_5$ to provide high cooling power down to 0.4 mK and a second using a Cu nuclear refrigerator capable of reaching 0.07 mK. In addition a fast turn-around 10 mK-10 T facility is available for testing experimental probes and sample properties prior to using the nuclear refrigerators. The nuclear refrigerators are housed in high quality electromagnetic shielded rooms in the University of Florida Microkelvin Laboratory and provide the ultra-quiet environments needed for high sensitivity measurements at very low temperatures.

Equipment is available to carry out measurements of magnetic and electric susceptibilities, ultrasound propagation, nuclear magnetic resonance and transport studies at sub-millikelvin temperatures.

Facility Developments

In order to probe the electromagnetic interactions in organic quantum magnets high precision ultra-low temperature capacitance bridges have been developed. This new capability has revealed the existence of new magneto-electric effects following the introduction of disorder in magnetic systems that display Bose-Einstein condensation of magnetic excitations.

Facility Plans

In response to user requests the High B/T facility is developing new capabilities to extend the available parameter space at low temperatures to moderately high pressures (2-3 GPa). This capability will permit the exploration of the density dependence of the ordered states of novel magnetic systems such as low dimensional frustrated magnets.

Science Productivity

The High B/T facility reported 10 peer reviewed publications for 2011, including three significant publications, and there were 9 research reports for a total of 8 independent experiments in 2011. One Ph.D. thesis was completed. Three examples of exceptional science include:

- **Novel Fractional Quantum Hall Effect in Two-Dimensional Electron Systems**

High B/T Research Magnets

<table>
<thead>
<tr>
<th>Superconducting Magnets</th>
<th>Refrigerator</th>
<th>Research Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5 T at 4 K (16.5 T at 1.2 K)</td>
<td>PrNi$_5$, nuclear refrigerator 0.4 mK, 10 nW cooling power</td>
<td>Magnetic and electric susceptibility measurements, NMR to 1000 MHz, transport, fQHE</td>
</tr>
<tr>
<td>2.5 cm DSV experimental space Bay 3 Microkelvin Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 T at 4K (10 T at 1.2 K)</td>
<td>Cu nuclear refrigerator 0.07 mK, 1 nW cooling power (lowest attained temperature 0.04 mK)</td>
<td>Magnetic and electric susceptibility, NMR/NQR to 1000 MHz, transport, fQHE, dHVA studies, ultrasound absorption</td>
</tr>
<tr>
<td>3.25 cm DSV experimental space Bay 2 Microkelvin Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 T</td>
<td>Dilution refrigerator 10 mK</td>
<td>Fast-turn-around facility for testing samples</td>
</tr>
<tr>
<td>2.5 cm DSV experimental space Williamson Hall Annex</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Studies of the quantum Hall effect in ultra-high mobility quantum well samples, at very low temperatures of 9 mK have revealed several new FQHE liquid states, as shown in Figure 7. For example, the low temperature measurements show well quantized FQHE states at $\nu = 2 + 1/3$ and $2 + 2/3$ in coexistence with the so-called re-entrant integer quantum Hall effect and, quite importantly, a new, clearly quantized FQHE state at $\nu = 2 + 2/5$, the nature of such a state being theoretically intensely explored. It could be a so-called parafermionic FQHE state, whose excitations also obey the non-Abelian statistics. Compared to the 5/2 state, the 12/5 state is believed to be superior in quantum computation in that one can perform universal topological quantum computing using the 12/5 state.

- Magnetic Susceptibility
 Measurements of the Bose-Glass Phase in NiCl$_{1.65}$Br$_{0.15}$-4Sc(NH$_3$)$_2$ at Low Temperatures

Measurements of the AC susceptibility of a bond-diluted quantum magnet NiCl$_{1.85}$Br$_{0.15}$-4Sc(NH$_3$)$_2$ down to 1 mK and for magnetic fields up to 15 T have shown that below a crossover temperature $T_c = 100$~200 mK, the critical fields H_c for Bose-Einstein condensation obey the scaling relation $|H_c(T) - H_c(0)| \sim T^\alpha$, with a novel and universal scaling exponent $\alpha \sim 0.9$ (see Figure 8), which is in agreement with numerical results from a theoretical model for the effects of the introduction of disorder in a Bose Einstein condensate. The results provide strong evidence of the existence of a Bose glass phase in NiCl$_{1.85}$Br$_{0.15}$-4Sc(NH$_3$)$_2$, and they display a quantitative signature of the transition between a Bose glass and a Bose Einstein condensate.

- NMR Probe of the Lattice Dynamics of Solid Helium at Low Temperatures

High sensitivity NMR experiments were employed to measure the nuclear spin-lattice relaxation times of very dilute samples of 3He in solid 4He at the same temperature range as that for which anomalies appear the torsional oscillator and shear modulus studies of solid 4He. The results reveal a sharp peak in the nuclear spin-lattice relaxation times (T_1) at $T=170$ mK for 3He concentrations of 16 and 24 ppm (see Figure 9). No such peak is seen for concentrations above 200 ppm, which are known to suppress the so-called supersolid effects.

The nuclear spin relaxation in dilute 3He-4He samples is driven by the tunneling of the 3He impurities in the solid. The tunneling rates are critically dependent on the lattice properties and small changes in the 4He lattice such as that due to stiffening at low temperatures can lead to large changes in the relaxation rates. These results are believed to be associated with the strong unusual changes in the lattice dynamics of 4He at low temperatures and not with the onset of superflow as the latter would lead to critical fluctua-

Figure 7. R_{xy} and R_{xx} between $\nu = 2$ and $\nu = 3$ at 9mK. Major FQHE states are marked by arrows. The horizontal lines show the expected Hall value of each FQHE state. The dotted line is the calculated classical Hall resistance.

Figure 8. Scaling of the critical temperatures with the distance from $T = 0$ critical fields, exhibiting a crossover between various exponents.
tions resulting in very sharp peaks for the values of T_1 and sharp minima for T_2 at well defined critical temperatures, which are not seen.

Progress on STEM and Building the User Community

One new user (Xuefeng Sun of Hefei National Laboratory for Physical Sciences, University of Science and Technology of China) requested magnet time in 2011 and magnet time was awarded for 2012. A special high sensitivity AC magnetic susceptibility bridge is being developed for Professor Sun’s proposed experiment to explore the properties of the geometrically frustrated pyrochlore material $\text{Tb}_2\text{Ti}_2\text{O}_7$, which is the only material with a pyrochlore structure that retains the properties of a dynamic cooperative paramagnet down to 50 mK.

Faculty members of the High B/T facility supervised three students under the NSF-supported Research for Undergraduates program in the summer of 2011, and throughout the year staff members hosted several visits from high school students and their teachers.

FIGURE 9. Temperature dependence of the nuclear spin relaxation rates for 24 ppm of ^3He in solid ^4He. The dashed blue line is a fit for a lattice induced relaxation.

ABOVE 2011 Research Experiences for Undergraduates (REU) participants at the University of Florida.
The NMR and MRI User Program in Tallahassee offers user scientists access to the highest magnetic fields along with the latest NMR techniques and probe technology. Our flagship 900 MHz ultra-wide bore spectrometer is the world’s highest field instrument for \textit{in vivo} imaging and also offers leading capabilities in materials and biological solid state NMR. Lower field instruments offer users additional capabilities such as solution NMR and ultra-fast sample spinning as well as opportunities for additional experiment time. Our technology efforts are now focused on the development of innovative probes for triple resonance solid state and high field \textit{in vivo} imaging. Efforts are also underway to develop rf probes and associated NMR instrumentation that will be needed for a ground-breaking new powered magnet, the 36 T series connected hybrid, which will have record-setting capabilities for NMR.

Facility Developments and Plans
In 2011, P. Gor’kov and coworkers completed development of a triple resonance (1H, 13C and 15N) magic angle spinning probe utilizing the Magnet Lab’s “Low-E” technology for the 900 MHz UWB NMR spectrometer. This extends a similar capability developed in 2010 for our 600 MHz instruments. These highly efficient and sensitive probes make it possible to use very high irradiation fields without damaging the NMR sample. They are very popular with users and are in great demand for protein structure determination experiments. In 2012, a similar triple-resonance probe for static experiments on proteins in membrane mimetic environments will be made available for users. The Magnet Lab is an international leader in the development of biological solids probes.

For \textit{in vivo} imaging users, the Magnet Lab now offers a number of specialized imaging probes in addition to our excellent 1H, 23Na and 3H/23Na double tuned volume coil probes for studies of rodents. Quadrature 23Na and quadrature 35Cl probes were added in 2011 to obtain higher sensitivity for these physiologically important nuclei. A 1H-free solenoid is also now available for imaging of materials and of bound water.

The narrowbore 830 MHz magnet has always been very useful for high sensitivity single-resonance MAS experiments on low-γ nuclei. In late 2012, we plan to introduce a new capability to this system for double resonance experiments. By using a probe based on the Low-E cross coil approach, we expect

NMR & MRI Systems at the Magnet Lab at FSU

<table>
<thead>
<tr>
<th>NMR Frequency</th>
<th>Field (T)</th>
<th>Bore (mm)</th>
<th>Homogeneity</th>
<th>Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7 GHz</td>
<td>40</td>
<td>32</td>
<td>10 ppm</td>
<td>Solid State NMR</td>
</tr>
<tr>
<td>1066 MHz</td>
<td>25</td>
<td>52</td>
<td>1 ppm</td>
<td>Solid State / Solution NMR</td>
</tr>
<tr>
<td>900 MHz</td>
<td>21.1</td>
<td>105</td>
<td>1 ppb</td>
<td>Solid State NMR, MRI</td>
</tr>
<tr>
<td>830 MHz</td>
<td>19.6</td>
<td>31</td>
<td>100 ppb</td>
<td>Solid State NMR</td>
</tr>
<tr>
<td>800 MHz</td>
<td>18.7</td>
<td>52</td>
<td>1 ppb</td>
<td>Solution NMR, Cryoprobe</td>
</tr>
<tr>
<td>720 MHz</td>
<td>16.9</td>
<td>52</td>
<td>1 ppb</td>
<td>Solution NMR</td>
</tr>
<tr>
<td>600 MHz</td>
<td>14</td>
<td>89</td>
<td>1 ppb</td>
<td>MRI and Solid State NMR</td>
</tr>
<tr>
<td>600 MHz</td>
<td>14</td>
<td>89</td>
<td>1 ppb</td>
<td>Solid State NMR</td>
</tr>
<tr>
<td>600 MHz</td>
<td>14</td>
<td>52</td>
<td>1 ppb</td>
<td>Solution NMR</td>
</tr>
<tr>
<td>500 MHz</td>
<td>11.75</td>
<td>89</td>
<td>1 ppb</td>
<td>Solid State NMR</td>
</tr>
<tr>
<td>500 MHz</td>
<td>11.75</td>
<td>89</td>
<td>1 ppb</td>
<td>NMR Microscopy</td>
</tr>
<tr>
<td>400 MHz</td>
<td>9.4</td>
<td>89</td>
<td>1 ppb</td>
<td>Solid State NMR</td>
</tr>
<tr>
<td>300 MHz</td>
<td>7</td>
<td>52</td>
<td>1 ppb</td>
<td>Instrument Development</td>
</tr>
<tr>
<td>300 MHz</td>
<td>7</td>
<td>89</td>
<td>1 ppb</td>
<td>Solid State NMR</td>
</tr>
</tbody>
</table>
to offer similar sensitivity for low-γ detection as our single coil probes but with an added 1H irradiation channel.

Another significant enhancement planned for 2012 is the addition of PISEMA capability for aligned membrane proteins to the solution 720 MHz Varian spectrometer. This should help ease pressure on the 600 MHz solid state instruments that has been growing for several years due to the availability new Magnet Lab-designed triple resonance probes.

Finally, our staff continues to prepare for NMR experiments on the upcoming 36 T series connected hybrid magnet. A set of solid state rf probes and a new console are in the works. When the magnet becomes available it will be a unique and record-setting facility for 1 ppm resolution NMR.

Science Productivity

Work at the NMR-MRI Facility in Tallahassee led to 60 annual research reports, five theses, and 41 peer-reviewed publications in 2011. These publications appeared in high-impact journals such as Trends in Biochemical Sciences (1), Journal of the American Chemical Society (4), Biomaterials (1) and Nature Chemistry (1), as well as in more specialized publications such as Journal of Magnetic Resonance (5), PLoS Computational Biology (1), and Inorganic Chemistry (1).

• 39K NMR

G. Wu and (Queen’s University) and Z. Gan (NHMFL) have utilized the Magnet Lab’s high magnetic fields, efficient NMR probes, and pulse sequences and have implemented for the first time 39K multiple-quantum magic-angle-spinning (MQMAS) method to bio-organic molecules [G. Wu et al., J. Am. Chem. Soc., 133, 19570–19573 (2011)]. The MQMAS experiment achieved sub-ppm isotropic resolution separating the four potassium sites inside a lipophilic G-quadruplex structure. The measured chemical shift and electric-field-gradient parameters are compared with DFT calculation for so-called NMR crystallography without the need for large single crystals. High magnetic fields are essential to facilitate solid-state NMR of the insensitive low-g quadrupolar nuclei that can be found in many catalysts and bio-molecules.

• 23Na Functional MRI

M. Harrington (Huntington Medical Research Institutes), E. Chekmenev (Vanderbilt) and V. Schepkin (NHMFL) used the ultra-high magnetic field of 21.1 Tesla for in vivo sodium MRI to investigate the pathophysiology of a rat migraine model. Intraperitoneal injection of nitroglycerin (NTG) decreased pain withdrawal threshold (p = 0.0003), caused eyelids to close (p < 0.0001), and increased central neuron activation (p < 0.0001) compared to saline injections. These behavioral changes correlated with sodium increases in brain, intracranial CSF, and vitreous humor (p < 0.05), ranging from 7.5 to 17%, as illustrated in the Figure 11. Sodium increases in 8 locations of rat brain were found but not in extra-cranial muscles. Regions of interest were quantified against a sodium calibration curve. Simulated neurons exposed to these higher sodium levels have more frequent and earlier spontaneous action potentials, and corresponding earlier sodium and potassium currents.

The investigators propose that rising sodium in CSF surrounding trigeminal nociceptors increases their excitability and causes pain, and that rising sodium in vitreous humor increases retinal neuronal excitability and causes photosensitivity. These results

Figure 10. 39K multiple-quantum magic-angle-spinning (MQMAS) obtained at 19.6 T resolves four potassium sites inside a lipophilic G-quadruplex structure.

Figure 11. Initial in vivo sodium MR image of a normal rat head is presented on the left side. The right side demonstrates the changes in sodium throughout rat brain initiated by migraine (25 minutes after NTG injection. Distinct increases from 7.5 to 17% in sodium are revealed throughout brain regions.
reveal that sodium rises to levels that increase neuronal excitability in this rat migraine model [M.G. Harrington et al., Cephalalgia, 31 (12), 1254-1265 (2011)].

• **In Situ Protein Structure Determination**

 F. Tian (Penn State Univ.) and R. Fu (NHMFL) evaluated the feasibility of using solid state MAS NMR for *in situ* structural characterization. They studied the transmembrane domain of recently identified protein LR11 in native *E. coli* membrane. LR11 interacts with the human amyloid precursor protein (APP), a central player in the pathology of Alzheimer’s disease. Approximately 50% of LR11 TM residues were assigned, allowing for comparisons of the secondary structure of LR11 TM in native membrane environments and in commonly used membrane mimics (e.g. micelles). Such *in situ* spectroscopy bypasses several obstacles in the preparation of membrane proteins for structural analysis, and offers an opportunity to investigate the consequences of membrane heterogeneity, bilayer asymmetry, chemical gradients, and macromolecular crowding on the protein structure [R. Fu et al., *J. Am. Chem. Soc.*, 133 (32), 12370 (2011)].

Progress on STEM and Building the User Community

The NMR-MRI Facility in Tallahassee had 196 users during 2011: 20% were female and 6% were minorities. Of the 101 senior investigators in 2011, 24 were new to the NHMFL, of which 7 were new principal investigators leading research projects (six of the proposals were submitted in 2011; one proposal was submitted in late 2010; all received magnet time in 2011). To attract new users and projects we continue to add new capabilities such as Low-E triple resonance solid state NMR and multi-nuclear imaging coils and to communicate these capabilities to the scientific community through posters and talks at national and international scientific conferences.
Advanced Magnetic Resonance Spectroscopy Facility at UF

2011 statistics on NMR-MRI@UF (AMRIS) users, proposals, and magnet usage are presented in Appendix A.

The AMRIS facility at the University of Florida supports nuclear magnetic resonance studies of chemicals, biomolecular systems, tissues, small animals, large animals, and humans. We currently offer eight systems with different magnetic fields and configurations to users for magnetic resonance experiments. AMRIS has eight professional staff members to assist users, maintain instrumentation, build new coils and probes, and help with administration.

Several of the AMRIS instruments offer users unique capabilities: the 750 MHz wide bore provides outstanding high-field microimaging for excised tissues and live mice; the 11.1 T horizontal MRI is the largest field strength magnet in the world with a 400 mm bore; the 600 MHz 1-mm HTS cryoprobe is the most mass-sensitive NMR probe in the world and is ideal for natural products; the 3 T human whole body has 32 channels for rapid parallel imaging and is the only whole body instrument in the state of Florida dedicated to research. These systems support a broad range of users from natural product identification to solid-state membrane protein NMR to cardiac studies in animals and humans to tracking stem cells and gene therapy in vivo to functional MRI in humans.

Facility Developments

With funding from an NIH shared instrumentation grant and the Magnet Lab, in 2011 we were able to purchase new consoles and gradients for our two oldest instruments, the 500 MHz solution/solid state NMR and 600 MHz solution/solid state NMR and MRI spectrometers. This equipment is scheduled for installation in early 2012 and will replace 12-15 year old RF technology; with this upgrade we will have replaced all the consoles that were installed in the AMRIS facility when it opened in 1998. The new consoles will allow us to capitalize on state-of-the-art digital technology for pulse sequence generation and data acquisition and to offer stronger gradients for diffusion sensitive measurements and MR microscopy.

In May of 2011 we said farewell to Barbara Beck, who had overseen RF coil development and testing within the AMRIS facility since its inception. After her retirement from AMRIS, Barbara finds she is able to spend much more of her time in area schools helping with STEM activities and is very much enjoying this next phase of her life. In January of 2012, Malathy Elumalai joined us as head of RF coil development and testing after spending over two years at the NMR-MRI user facility in Tallahassee developing coils for the UWB 900.

Three of the technology cores funded by the Magnet Lab, in HTS probe technology, microimaging, cell and molecular imaging are now leveraged with NIH individual investigator grants. A next generation 1.5 mm HTS probe for natural

NMR & MRI Systems at the AMRIS Facility at UF

<table>
<thead>
<tr>
<th>1H Frequency</th>
<th>Field (T)</th>
<th>Bore (mm)</th>
<th>Homogeneity</th>
<th>Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>750 MHz</td>
<td>17.6</td>
<td>89</td>
<td>1 ppb</td>
<td>Solution/Solid State NMR & MRI</td>
</tr>
<tr>
<td>600 MHz</td>
<td>14</td>
<td>52</td>
<td>1 ppb</td>
<td>Solution/Solid State NMR & MRI</td>
</tr>
<tr>
<td>600 MHz</td>
<td>14</td>
<td>52</td>
<td>1 ppb</td>
<td>1-mm HTS Cryoprobe</td>
</tr>
<tr>
<td>500 MHz</td>
<td>11.7</td>
<td>52</td>
<td>1 ppb</td>
<td>Solution/Solid State NMR</td>
</tr>
<tr>
<td>470 MHz</td>
<td>11.1</td>
<td>400(^1)</td>
<td>0.1 ppm</td>
<td>MRI and NMR of animals</td>
</tr>
<tr>
<td>200 MHz</td>
<td>4.7</td>
<td>330</td>
<td>0.1 ppm</td>
<td>MRI and NMR of animals</td>
</tr>
<tr>
<td>130 MHz</td>
<td>3</td>
<td>900(^2)</td>
<td>0.1 ppm</td>
<td>Whole body MRI and NMR of humans and large animals</td>
</tr>
</tbody>
</table>

\(^1\) 290 mm useable bore
\(^2\) 600 mm useable bore
products and metabolomics optimized for both 1H and 13C detection, developed by Art Edison and Bill Brey in collaboration with Agilent, Inc., is in final testing and will become available to users in 2012. This probe will be installed on the 600 MHz NMR spectrometer which was added to the AMRIS user facility in fall 2010. New microimaging coils ranging in size from 50-100 μm, developed by Steve Blackband in collaboration with Bruker Biospin, Inc., have also been added for ultra high resolution microimaging. NIH funding is allowing him to further develop this technology for microimaging of live tissue slices. Glenn Walter has developed a number of genetic and molecular MRI probes that are used to look at cell function and fate in bone marrow, muscle, tumors, brain, and in the heart. In addition, all three cores have provided user training and outreach through workshops partially funded by the Magnet Lab.

Finally, through generous support of human imaging initiatives by the UF McKnight Brain Institute, the 3T / 90 cm imaging system was upgraded to 32 receive channels in early 2011 and two 32-channel coils, for cardiac and fMRI studies, were installed. Joy Kidder, our former radiology tech for the 3T, retired and Tammy Nicholson joined our staff as her replacement. Tammy comes with over 15 years of experience in clinical MRI. Through UF support of the human imaging initiative, we are currently recruiting for a faculty position to spearhead the human MRI research program.

Facility Plans

In spite of the challenging budgetary climate, our users have consistently successfully pursued federal funding to support their research programs and assisted the AMRIS facility in writing proposals to upgrade instrumentation. The successful partnership of the Magnet Lab user program with individual investigator research grants also provides constant scientific motivation for our continued technology development, particularly for the three technology cores of the NHMFL in multimodal nanoparticles specifically designed for use at high magnetic fields, microimaging, and high sensitivity NMR.

As part of the Magnet Lab’s renewal proposal that was submitted in August, 2011, we have developed a new Dynamic Nuclear Polarization (DNP) initiative in collaboration with the EMR and NMR-MRI user programs in Tallahassee. While NMR and MRI are unique in their ability to non-perturbatively provide element-, site- and space-specific information, their uses are limited by the fact that overall nuclear polarization remains very small even at the highest magnetic fields available today. DNP is a technique that seeks to overcome this limitation by transferring to nuclei the much higher polarizations of electrons, via irradiation at the latter’s Larmor frequency. When implemented at cryogenic temperatures and high fields, DNP can lead to \geq10,000x increases in the nuclear polarization and NMR signal. The polarized sample can then be rapidly melted and injected into animals for in vivo imaging and spectroscopy of metabolites, a technique known as dissolution DNP. We are undertaking the construction of a dissolution-based DNP polarizer for solution and in vivo NMR and MRI applications in order to provide users with a reliable technology to measure metabolism in living cells or animals.

Science Productivity

The AMRIS facility users reported 37 peer-reviewed publications and 11 theses for 2011. Some of the notable research highlights from 2011 include:

Multifunctional nanoparticles integrating imaging modalities (such as magnetic resonance and optical) and therapeutic drugs are promising candidates for future cancer diagnostics and therapy. While targeted drug delivery and imaging of tumor cells have been the major focus in engineering nanoparticle
 phones, no extensive efforts have been made towards developing sensing probes that can confirm and monitor intracellular drug release events. Development of multimodal/multifunctional nanocomposite probes that are optically and magnetically imageable, targetable and capable of reporting on intracellular drug release events have been demonstrated using several platforms within the AMRIS facility. (See Figure 13.)

Progress on STEM and Building the User Community

The AMRIS facility received proposals from 7 new user principal investigators in 2011, and all received magnet time in 2011.

Art Edison, professor and director of NHMFL Chemistry & Biology, travels to underrepresented colleges and universities as part of the Magnet Lab’s CO-WIN program. In 2011 he visited Claflin University in South Carolina to give a series of lectures and a lab on introductory NMR to undergraduate chemistry students. Three Claflin students, all underrepresented minorities, spent the summer doing metabolomics research in Dr. Edison’s lab. The students have taken the projects back to Claflin, where they are all pursuing the studies with a new assistant professor at Claflin, Dr. Arezue Boroujerdi, who is an expert in metabolomics. Dr. Edison has collaborated on an NSF proposal with Claflin so that they could obtain a cryoprobe and sample changer, and he has also provided support for a new biofuels initiative that they have submitted to the NSF.
Electron Magnetic Resonance Facility

2011 statistics on EMR Facility users, proposals, and magnet usage are presented in Appendix A.

The Electron Magnetic Resonance (EMR) facilities at the Magnet lab offer users several home built, high field and high frequency instruments providing continuous frequency coverage from 10 GHz to ~1 THz, with additional frequencies available up to 2.5 THz using a molecular gas laser. Several transmission probes are available for continuous-wave (c.w.) measurements, which are compatible with a range of magnets at the lab, including the highest field 45 T hybrid magnet. Some of the probes can be configured with resonant cavities, providing enhanced sensitivity as well as options for in situ rotation of samples in the magnetic field. Quasi-optical (QO) reflection spectrometers are also available in combination with dedicated high-resolution 12/17 T superconducting magnet systems; a simple QO spectrometer has also been developed for use in the resistive magnets (up to 45 T).

In addition to c.w. capabilities, the EMR group boasts the highest frequency pulsed EPR spectrometer in the world, operating at 120, 240 and 336 GHz with 100 ns time resolution. A commercial Bruker Elexys 680 operating at 95 GHz is available upon request. In the general science building, two superconducting magnets currently serve three spectrometers, as presented in the table below. EMR staff members also assist users in the DC facility using broadband tunable homodyne and heterodyne spectrometers. The combination of instruments may be used for a large range of applications, including the study of optical conductivity, cyclotron resonance, paramagnetic impurities, molecular clusters, antiferromagnetic and ferromagnetic compounds and thin films, optically excited paramagnetic states, radicals, catalysts, model complexes and other biologically relevant species, etc.

New in 2011: EMR instruments/capabilities/personnel

Bio Lab
A newly renovated wet biochemistry lab supporting biological EPR user operations is located at the C-wing of the Magnet Lab, in close proximity to the EMR facilities’ spectrometers. The laboratory has approximately 300 square feet of space that can accommodate 3 to 5 users and students. The laboratory has a fume hood, a chromatography refrigerator and freezers (-20 and -80 °C). The laboratory is equipped for a range of biochemical sample preparation, purification, and analysis, including an UV-Vis spectrophotometer, centrifuges, incubators, etc.

Frequency domain magnetic resonance spectrometer (FDMRS)
The new spectrometer consists of a variety of tunable backward wave

EMR Systems at the Magnet Lab in Tallahassee

<table>
<thead>
<tr>
<th>Spectrometer</th>
<th>Frequency (GHz)</th>
<th>Field range (T)</th>
<th>c.w. – EPR</th>
<th>Pulsed</th>
<th>Time Resolved</th>
<th>ENDOR</th>
<th>Rotation</th>
<th>Absolute Sensitivity1 at 290 K (spins/mT)</th>
<th>Concentration Sensitivity at 290 K (spins/cm3·mT)</th>
<th>Max. sample size (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission</td>
<td>23–660</td>
<td>0–17</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>1013</td>
<td>5x1013</td>
<td>200</td>
</tr>
<tr>
<td>Homodyne QQ</td>
<td>190–670</td>
<td>0–17</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>5x1011</td>
<td>2x1013</td>
<td>10</td>
</tr>
<tr>
<td>Heterodyne QQ & Transmission</td>
<td>120, 240, 336</td>
<td>0–12.5</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>109 (in cavity) 2x1011</td>
<td>5x1013 2x1012</td>
<td>0.1 100</td>
</tr>
<tr>
<td>DC Field2 QQ & Transmission</td>
<td>50–900</td>
<td>0–45</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>109 (in cavity) 1012</td>
<td>5x1013</td>
<td>200</td>
</tr>
<tr>
<td>Bruker W-band</td>
<td>95</td>
<td>0–6</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>5x106</td>
<td>1012</td>
<td>0.4</td>
</tr>
</tbody>
</table>

1 The Absolute sensitivity is the minimum number of detectable spins per mT linewidth and a 1Hz bandwidth at room temperature.
2 In combination with a far-infrared laser, select frequencies up to 2500 GHz are available.
oscillators (BWOs) operating in the frequency range of 50 GHz to 1.2 THz. The frequency is controlled through applying variable voltage via a computer interface. The same interface collects the voltage from the Golay cell detector. The arrangement of the spectrometer is an optical one, i.e. involving a propagation of the sub-THz or THz beam through open space. The beam is focused on the sample and then directed to the detector through high-density polyethylene lenses. The signal is detected as the difference of transmission through the disk-shaped solid sample (pellet), and through the empty cryostat. The sample is typically cooled to below the LHe lambda point, although can be also measured above LHe boiling point. The first experimental results obtained with this spectrometer have been published: J. Krzystek; D. Smirnov; C. Schlegel; J. van Slageren; J. Telser; A. Ozarowski, J. Magn. Reson., 213, 158-165 (2011).

Vector Magnet System for high-pressure EPR studies

A superconducting vector magnet was delivered to the Hill lab in 2011. This magnet consists of three orthogonal superconducting split-solenoids that can be driven independently, thus enabling full field rotation about two axes relative to the sample under investigation, and without any mechanical adjustments to the setup. This magnet is thus ideally suited to cavity-based studies, particularly those involving the application of high pressures that were described in last year’s annual report. We expect this capability to have a major impact on experiments during the coming years. Development of new probes for performing EPR measurements under pressure has very recently been completed and we report the first results further below. It should be noted that the ability to rotate the applied field is absolutely critical to the recently developed single-crystal high-pressure EPR capability. This has been possible about a single-axis up to this point. The ability to rotate about two axes will be truly transformational.

THz-to-IR Workshop

Stephen Hill organized an NSF-funded workshop in Washington, D.C., in April 2011, entitled Applications of Terahertz to Infrared Probes in Molecular and Materials Sciences. This workshop was attended by about 30 leading scientists from many fields of research (materials science, condensed matter physics, chemistry and biology), from across the United States and abroad (from universities, national and government labs). The meeting was also well attended by officials from the National Science Foundation. A detailed report on the workshop will be submitted to the NSF later this year.

Schuler Postdoctoral Fellow

Christopher Beedle (PhD from UC San Diego, 2010) joined the EMR group in 2011. His position is funded through the Schuler Fellowship Postdoctoral Program, named in honor of Mr. and Mrs. John N. Schuler of Longboat Key, Florida, who have given generously to Florida State University. Beedle has devoted considerable effort to EMR user support activities during 2011 and will remain with the group in 2012.

HiPER

Construction of HiPER (see 2010 annual reports) remains on schedule, and we anticipate delivery and installation in the fall of 2012. After a period of commissioning and testing, we anticipate user operations to start in mid-2013.

Humboldt Postdoctoral Fellow

Komalavalli Thirunavukkuarasu will join the EMR group in May 2012, supported by a prestigious Feodor Lynen fellowship from the German Alexander von Humboldt Foundation. Thirunavukkuarasu received this award on the basis of a proposal focused on using the high-pressure EPR facilities developed at the Magnet Lab to study problems in magnetism and correlated electron physics.

Science Productivity

In 2011 a large number of research groups and projects were accommodated by the EMR group, resulting in the submission of 48 research reports, up from 38 in 2010. In addition, 36 peer-reviewed journal articles were reported by our users, as well as numerous presentations at conferences. Many publications appeared in high-impact journals including: Nature and Nature Structural Biology; Angewandte Chemie; 2 in the Proceedings of the National Academy of Sciences; 2 in Physical Review Letters; 2 in the Journal of the American Chemical Society; 2 in Chemical Communications; 3 in Physical Review B; 3 in Inorganic Chemistry; and 1 in Dalton Transactions in Chemistry. Projects spanned a range of disciplines from applied materials research to studies of proteins. A few examples are given here.

FIGURE 15. Linear-chain crystal structure in CuSeO₃. Local coordinates of the staggered g tensor, the staggered DM vector \(\mathbf{D} = (D_x, 0, D_z) \), and the axis of the symmetric anisotropic exchange \(J_\mathrm{c} \).
Exchange anisotropies revealed by ESR

M. Herak (Ljubljana/Zagreb), A. Zorko (Ljubljana), D. Arčon (Ljubljana), A. Potočnik (Ljubljana), M. Klanjšek (Ljubljana), J. van Tol (NHMFL), A. Ozarowski (NHMFL), and H. Berger (Lausanne)

The ground state of quasi-1D spin-1/2 systems is extremely sensitive to the presence of symmetric and/or anti-symmetric anisotropic exchange [Dzyaloshinskii-Moriya (DM) interaction]. Effects on the EPR spectra of these anisotropies along with the staggered g tensor of 1D spin-1/2 systems were studied by Oshikawa and Affleck (OA). We use their theory to explain the ESR results on CuSe$_2$O$_5$, a quasi-1D spin-1/2 system with intrachain interaction J = 160 K, in which the staggered g tensor and the DM interaction are allowed by symmetry (Figure 15).

Electron spin resonance (ESR) presents one of the most powerful techniques for studying such systems since the presence of anisotropies is reflected in the linewidth of the measured spectra, which are also affected by the staggered field and DM interaction (see Figure 16). For these reasons, performing the high-field measurements at the Magnet Lab was crucial for this project. Combining the ESR results with the OA theory, we discovered that both the symmetric and antisymmetric (DM) anisotropic exchange interactions are present in CuSe$_2$O$_5$, with J_1 = 0.04J and the DM vector $D = (-0.044, 0, \pm 0.0255)J$ (Figures 16 and 17).

Facilities: 12.5 and 17 T magnets.

Figure 16. T-dependence of the ESR linewidth fits to results of the OA theory.

Figure 17. Angular dependence of ESR linewidth at 5 K. Solid lines are fits to the OA theory.
The system also represents the ideal system with which to test the high-pressure EPR technique due (i) to its $S = \frac{1}{2}$ spin which typically gives rise to sharp EPR peaks, and (ii) to the significant anisotropy of its spectrum, which makes it easy to discriminate the signal coming from the crystal from those of other paramagnetic species in the pressure cell.

Angle-dependent EPR spectra were recorded for a single-crystal sample at three different pressures (measured in situ from ruby fluorescence at low temperatures), as shown in the top panel of Figure 19. At pressures below the transition from phase I to II (see lower right figure), a single sharp, symmetric peak is observed, with a g-anisotropy that is typical for Cu$^{2+}$, in agreement with ambient pressure measurements; the maximum $g \approx 2.42$ corresponds to the parallel component ($//a$), while the minimum $g \approx 2.08$ corresponds to the perpendicular component ($//bc$). As the pressure is increased to 18 kbar, a 2nd broader peak emerges at the location perpendicular g-component (~2.25 T). This peak exhibits very little angle-dependence. At the highest pressure, all of the EPR intensity transfers to the weakly angle-dependent peak, suggesting that the Jahn-Teller axis that defines the axial direction has fully re-oriented to a direction perpendicular to the field rotation plane, i.e., the c-axis. The lower left panel of Figure 19 plots the angle-dependence of the g-factors corresponding to the resonances observed at the three different pressures.

The high-pressure EPR studies are in full qualitative agreement with the conclusions of the powder X-ray studies in terms of the first transition between phases I and II. The only discrepancy is in the pressure at which the sample fully converts to phase II, which was found to be ~20 kbar in the present investigation, rather than the 9 kbar in the powder studies. These differences may be ascribable to several factors, including the different pressure mediums employed in the two studies, and the fact that crystals were studied in the present case. A paper describing this work has been submitted for publication.

Progress on STEM and Building the User Community

In 2011, the EMR group received 13 proposals from first time new PIs out of a total of 40, i.e., 33% of our applications were from first time users, which is almost identical to 2010. 113 researchers visited the EMR facility in 2011, of which roughly a quarter were either female (15%) or minority (7%). In an effort to attract new users, the EMR group continues to provide up to $500 of financial support to first time visitors to the lab. In addition, members of the EMR group made aggressive efforts to advertise the facility at international workshops and conferences. These efforts included attending conferences outside of our own immediate research areas. The group also organizes several workshops and symposia and provided financial support in the form of student travel grants for the two main EPR conferences in the United States. We plan to continue this series of student workshops in the coming years as a means of outreach to the international EPR community. Finally, the EMR group has participated in several outreach activities, including the mentorship of summer REU students, RETs and local high-school interns.

FIGURE 18. Measured and calculated decoherence times T_2 in an Fe$_8$ single crystal with the magnetic field along the y-direction of the zero-fields splitting tensor. [Adapted from Nature 476, 79 (2011)]

FIGURE 19. Top panel: Angle dependent spectra recorded at 10° intervals at three pressures. Lower left panel: Angle-dependence of the g-factors at the three different pressures. Lower right panel: Illustration of the coordination around the CuII ion in the three phases. [G.J. Halder, K.W. Chapman, J.A. Schlueter, J.L. Manson, Angew. Chem. Int. Ed. 49, 419-421 (2010)].
Ion Cyclotron Resonance Facility

2011 statistics on ICR Facility users, proposals, and magnet usage are presented in Appendix A.

During 2011, the Fourier Transform Ion Cyclotron Resonance (ICR) Mass Spectrometry program continued instrument and technique development as well as pursuing novel applications of FT-ICR mass spectrometry. These methods are made available to external users through the NSF National High-Field FT-ICR Mass Spectrometry Facility. The facility features five staff scientists who support instrumentation, software, biological applications, petrochemical and environmental applications, and user services as well as a machinist, technician, and several rotating postdocs who are available to collaborate and/or assist with projects.

Facility Developments

An actively-shielded 14.5 T, 104 mm bore system offers the highest mass measurement accuracy (<300 parts-per-billion rms error) and highest combination of scan rate and mass resolving power available in the world (Protein Sci., 19, 703-715 (2010)). The spectrometer features electrospray, atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization sources (APCI); linear quadrupole trap for external ion storage, mass selection, and collisional dissociation (CAD); and automatic gain control (AGC) for accurate internal mass calibration, efficient tandem mass spectrometry (as high as MS⁵), and long ion storage period. A redesign to the custom-built mass spectrometer coupled to the 9.4 T, 200 mm bore superconducting magnet designed around custom vacuum chambers improved ion optical alignment, minimized distance from the external ion trap to magnetic field center and facilitates high conductance for effective differential pumping. J. Am. Soc. Mass Spectrom., 22, 1343-1351, (2011). The length of the transfer optics is 30% shorter than the prior system, for reduced time-of-flight mass discrimination and increased ion transmission and trapping efficiency at the ICR cell. The ICR cell, electrical vacuum feed-throughs, and cabling have been improved to reduce the detection circuit capacitance (and improve detection sensitivity) 2-fold. When combined with compositionally complex organic mixtures such as dissolved organic matter [Anal. Chim. Acta, 706, 261-267 (2011)] and petroleum [Int. J. Mass Spectrom., 300, 149-157 (2011)], mass spectrometer performance improves significantly, because these mixtures are comprised of mass “splits” that are readily separated and identified by FT-ICR MS. The magnet is passively shielded to allow proper

<table>
<thead>
<tr>
<th>Field (T), Bore (mm)</th>
<th>Homogeneity</th>
<th>Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5, 104</td>
<td>1 ppm</td>
<td>ESI, AP/LIAD-CI, APPI FT-ICR, Thermospray Iodination, DART</td>
</tr>
<tr>
<td>9.4, 220</td>
<td>1 ppm</td>
<td>ESI, AP/LIAD-CI, APCI, APPI FT-ICR, Thermospray, DART, DAPPI</td>
</tr>
<tr>
<td>9.4, 155</td>
<td>1 ppm</td>
<td>FD, LD FT-ICR</td>
</tr>
<tr>
<td>7, 155</td>
<td>1 ppm</td>
<td>EI, CI FT-ICR</td>
</tr>
</tbody>
</table>
function of all equipment and safety for users. The system features external mass selection prior to ion injection for further increase in dynamic range and rapid (~100 ms timescale) MS/MS [Anal. Chem., 75, 3256-3262 (2003)]. Available dissociation techniques include collision-induced (CID), infrared multiphoton-induced (IRMPD), and electron capture-induced (ECD). Development and design of an Atmospheric Pressure Laser-Induced Acoustic Desorption Chemical Ionization (AP/LIAD-CI) source enables facile and independent optimization of analyte desorption, ionization, and sampling events, and can be coupled to any mass analyzer with an atmospheric pressure interface [Anal. Chem., 83, 1616-1623 (2011)]. Baseline resolution for an intact 147.7 kDa monoclonal antibody set the current world record for unit mass resolution and facilitates future characterization of large biomolecules by FT-ICR MS. Adduct dissociation, optimization of detected total ion number, and optimization of ICR cell parameters resulted in long ICR transient lifetime (up to 20s) and resulted in magnitude-mode resolving power ~ 420,000 at m/z 593 for the 57+ charge state, the highest mass for which baseline unit mass resolution has been achieved [Anal. Chem., 83, 8391-8395 (2011)].

The 9.4 and 7 T actively shielded FT-ICR instruments are available for analysis of complex nonpolar mixtures and instrumentation development. The 9.4 T magnet is currently used for field desorption [Anal. Chem., 80, 7379-7382 (2008)] and for elemental cluster analysis. The 7 T magnet is optimized for volatile mixture analysis [Rev. Sci. Instrum., 77, 025102 (2006)] and can be used to develop ion optics and ICR ion traps. Samples are volatilized in a heated glass inlet system (at 200-300 °C) and externally ionized by an electron beam (0-100 eV, 0.1-10 μA). The ions are collected in a linear multipole ion trap and injected into the FT-ICR cell. Mass resolving power (m/Δm) greater than 10^5 and mass accuracy within 1 ppm have been achieved with both systems.

Science Productivity

Automated broadband phase correction of FT-ICR data can in principle produce and absorption-mode spectrum with mass resolving power as much as a factor of 2 higher than conventional magnitude-mode display, an improvement otherwise requiring a more expensive increase in magnetic field strength. We have developed and implemented a robust and rapid automated method to enable accurate broadband phase correction for all peaks in the mass spectrum and present experimental FT-ICR absorption-mode mass spectra with at least 40% higher resolving power, increased number of resolved peaks, and higher mass accuracy relative to magnitude mode spectra and produce more complete and more reliable elemental composition assignments for complex organic mixtures such as petroleum [Anal. Chem., 82, 8807-8812 (2010)]. Phase correction applied to complex petroleum fractions facilitates resolution and identification of ionic species that differ in mass by roughly the mass of an electron [J. Mass Spectrom., 46, 337-343 (2011)], and provides accurate elemental composition assignment to establish compositional boundaries for fossil hydrocarbons [Energy Fuels, 25, 2174-2178 (2011)].

Investigation into observed nonlinear response at low excitation electric field magnitude due to Coulombic shielding reported an excitation voltage threshold that increases concurrent with the number of shielded ions, and determine that shielding results in reduced transient duration at low excitation voltage [Int. J. Mass Spectrom., 301, 220-223 (2011)]. Ion transfer efficiency through radiofrequency multipole ion guides used to transfer ions through strong magnetic field gradients between source and analyzer regions of FT-ICR mass spectrometers results in reduced ion transfer efficiency. The analytical basis for ion resonance in radiofrequency multipole ion guides immersed in a strong magnetic field gradient compared to simulated ion trajectories determined that ion losses due to transient cyclotron resonance occur at cyclotron frequency equal to the multipole rf drive frequency divided by the multipole order [J. Am. Soc. Mass Spectrom. 22, 591-601, (2011)].

The Predator data station is the first FT-ICR MS data station comprised solely of fast data acquisition hardware (PCI, PXI and PXI Express) that facilitates rapid data transfer speed, required for extended transient duration for complex petroleum samples, and can be implemented to any FT-ICR MS instrument [Int. J. Mass Spectrom., 306, 246-252 (2011)].

A novel “walking” calibration equation for complex petroleum mixtures divides the mass spectrum into dozens of adjoining segments and applies a separate calibration to each segment thereby eliminating systematic error with respect to m/z and increases the number of assigned peaks by as much as 25% while reducing the rms mass error by as much as 3-fold for significant improved confidence in the elemental composition assignment [Anal. Chem., 83, 1732-1736 (2011)].

Unit mass baseline resolution for an intact 148 kDa monoclonal antibody provided the current world record for unit mass resolution of an intact protein by FT-ICR MS [Anal. Chem., 83, 8391-8395 (2011)]. Dissociation of noncovalent adducts, optimization of detected total ion number, and optimization of ICR cell parameters to minimize space charge shifts, peak coalescence, and destructive ion cloud Coulombic interactions resulted in achieved magnitude-mode resolving power ~ 420,000 at m/z 2593 for the 57+ charge state, the highest mass for which baseline unit mass resolution has been achieved. Automated phase correction of time-domain FT-ICR signal [Anal. Chem., 82, 8807-8812 (2010)] yields a narrower mass spectral peak
Development of novel ionization techniques such as Atmospheric Pressure Laser-Induced Acoustic Desorption Chemical Ionization (AP/LIAD-CI) decouples analyte desorption from subsequent ionization and enables rapid and independent optimization and generates analyte ions which are efficiently thermalized by collisions with atmospheric gases thereby reducing fragmentation. Novel ionization techniques that facilitate molecular characterization of intact biochar without sample preparation or pretreatment have been developed for characterization of natural organic matter unobtainable by conventional ionization techniques due to solubility limitations [Anal. Chem., 83, 1616-1623 (2011)].

Biomolecular sequence verification continues to be in high demand. Protein and oligonucleotide masses can be determined with ppm accuracy [Rapid Commun. Mass Spectrom., 24, 2386-2392 (2010)]. Molecules can be fragmented (by collisions, photons, or electron capture by multiply-charged positive ions) to yield sequence-specific products. Sites and nature of post-translational modification (e.g., glycosylation, phosphorylation, etc.) are readily determined [J. Proteome Research, 9, 2098-2108 (2010)]. In-house software has been developed for rapid data analysis. We devised a method to distinguish N-terminal from C-terminal peptides by use of electron capture dissociation MS/MS [Anal. Chem., 79, 7596-7602 (2007)], as well as the first large-scale characterization of hundreds of membrane lipids from cell cultures [Anal. Chem., 79, 8423-8430 (2007)].

Tertiary and quaternary structure can also be probed. Automated hydrogen/deuterium exchange has been improved by depletion of heavy isotopes (13C/15N) for protein subunits of a complex can greatly simplify the mass spectra, increase the signal-to-noise ratio of depleted fragment ions, and remove the ambiguity in assignment of m/z values to the correct isomeric peptides [Anal. Chem., 82, 3293-3299 (2010)]. Details of biomolecular conformation and surface contact between molecules in a noncovalent complex can be deduced. Solution-phase hydrogen/deuterium exchange monitored by FT-ICR MS applied to study structural dynamics and the calcium-induced conformational changes of the cardiac isoform of troponin [Int. J. Mass Spectrom., 302, 116-124 (2011)]. Fast exchange rates were observed for the N-terminal extension of Tnl, specific to the cardiac isoform. Results corroborate prior X-ray crystallography and NMR interpretations and illuminated previously unresolved domains.

Biofuel characterization established the polar lipid profile of fatty acids, glycolipids, phospholipids, and betained lipids for Nannochloropsis oculata, a green algae highly prized for its oils suitable for biodiesel production. The first application of online liquid chromatography-mass spectrometry (LC-MS) characterization of algae polar lipids provides highly accurate mass measurement and resolves monoisotopic peaks from interfering components for unique determination of lipid elemental compositions [Energy Fuels, 25, 4770-4775 (2011)].

Progress on STEM and Building the User Community
The ICR program had 15 new principal investigators in 2011. The ICR program also enhanced its undergraduate research and outreach program for 3 female undergraduate scientists along with two female high school students. One high school student was selected as one of 40 finalists in the National Intel Science Talent Search, and presented her research from the ICR facility at the National Academy of Sciences in Washington, D.C. The ICR program in 2011 supported the attendance of scholar-scientists, postdoctoral associates, graduate, undergraduate and high school students at numerous national conferences to present current results.
ChaptEref 3: User facCilitys

Geochemistry Facility

2011 statistics on Geochemistry Facility users, proposals, and magnet usage are presented in Appendix A.

The geochemistry facility has six mass spectrometers of which four are available to outside users. One instrument is a multi collector thermal ionization instrument (Finnegan MAT 262/RPQ), which is used for measurements of isotopes of elements with low first ionization potential. The second instrument is a single collector inductively coupled plasma mass spectrometer (ICP-MS), ELEMENT, which is used for trace metal abundance determinations. A separate laser ablation system can be interfaced for in-situ trace element analyses on solid materials. The third instrument is a multi collector inductively coupled plasma mass spectrometer (NEPTUNE) used for determination of isotopic abundances of metals. The fourth instrument is a mass spectrometer designed for the measurement of the light stable isotopes (C, N, O, S).

The facility is run with the support of external grants and in the last year individual principal investigators had funding from NSF (five divisions of the GEO directorate), NASA, NOAA, EPR (Electrical Power Research Institute), as well as BP oil spill funding.

Facility Developments

Our 17 year-old thermal ionization mass spectrometer has become a niche instrument, and we will not report on it this year. In October of this year the replacement for the 14 year-old ELEMENT ICP-MS (ELEMENT2) was installed. We switched our Argon supply to a large Dewar outside the Magnet Lab building, which saves us from maneuvering 200 lbs. dewars through the laboratory. We also filled the technical position for a Scientific Research Specialist to support the mass spectrometry facility.

Facility Plans

No plans exist for changing the instrumentation or laboratories.

Science Productivity

In 2011, we published 20 peer-reviewed publications and made 18 presentations at international meetings. In addition, three students defended their Ph.D.s, and two students received Master of Science degrees. We have broadened our funding with a NSF grant from the atmospheric sciences program. The new ICP-MS instrument is supported by three NSF programs: Chemical Oceanography, Marine Geology and Geophysics in Ocean Sciences, and Instrumentation and Facilities in Earth Sciences.

Science highlight: Carbon isotope analyses of fossil teeth performed in our laboratory by Y. Wang contributed to the conclusion that Pleistocene megafauna evolved at high altitude. Ice Age megafauna have long been known to be associated with global cooling during the Pleistocene, and their adaptations to cold environments, such as large body size, long hair, and snow-sweeping structures, are best exemplified by the woolly mammoths and woolly rhinos. These traits were assumed to have evolved as a response to the ice sheet expansion. Wang and co-workers discovered a new Pliocene mammal assemblage from a high-altitude basin in the western Himalayas, including a primitive woolly rhino. These new Tibetan fossils suggest that some megaherbivores first evolved in Tibet before the beginning of the Ice Age. The cold winters in high Tibet served as a habituation ground for the megaherbivores, which became pre-adapted for the Ice Age, successfully expanding to the Eurasian mammoth steppe.

Progress on STEM and Building the User Community

The facility is open to users of all disciplines, and we have a long-time collaboration with the USGS Volcano Monitoring Program. During the summer we hosted two undergraduate students from the REU program. We participated in the annual open house. As our facilities are mainly supported through external grants, external users have to be able to contribute to the cost of the lab use, but we continue to help people get preliminary data for use in proposals etc., free of charge. Also, training of new users on the instruments is done free of charge. This year saw again an increase in users from FSU’s Chemistry and Biochemistry Department.
A central feature of the NHMFL’s mission is the provision of unique high-performance magnet systems for our users that exploit the latest materials and magnet design developments. During 2011 the MagLab made significant progress on all fronts: delivering new resistive and pulsed magnets to the user community along with making significant development in new superconducting and resistive-superconducting hybrid magnet projects as well as completing promising new demonstrations of the potential for High-Temperature Superconducting materials and coils. As we move forward, the balance of development of new magnet systems with development of new technology to keep us at the forefront is of critical importance. Collaborations with other leading industrial, academic and government groups that develop these new magnet technologies are built into many of these thrusts. The most immediate impact to the user community in 2011 was the delivery of a novel split resistive magnet that provides a world-record magnetic field (25 T vs. 18 T elsewhere) along with uniquely large mid-plane ports for scattering experiments! Several scientists have now used the magnet to conduct experiments not possible elsewhere (see Chapter 3. The User Program, DC Field Facilities).

In the pulsed magnet facility at the Los Alamos branch, 2011 saw the completion of an upgrade to the 100 T system that set a new record of 97.4 T in August and is routinely available to users at 94 T (see Chapter 3 for details). Further upgrades to 100 T are being considered; further information appears later in this chapter.

In late 2009 we received funding from the NSF’s Major Research Instrumentation program to design and build an all-superconducting magnet to provide 32 T to the scientific community. While superconducting demonstration coils have been built that provide as much as 34.6 T, the highest field available worldwide today in a user facility is 23.5 T in Lyon, France. Achieving a 36% increase in field for a superconducting user magnet requires development of numerous scalable technologies such as: uniformity of YBCO tape properties, ultrathin insulation systems, quench detection and protection algorithms, high-strength joints, reinforcement procedures, coil winding equipment, etc. 2011 saw tremendous progress on all of these fronts culminating with testing of two separate small coils that use one and...
six double-pancakes, respectively. The coil size was chosen to be large enough to address full scale features of the 32 T coils, yet small enough to conserve conductor and fit the available test facilities. The coil construction includes winding mandrels, inside and outside crossovers, in-line joints, co-wound reinforcement, terminals, overbanding reinforcement and insulating spacers that are full featured components for 32 T. The coils both contained protection heaters embedded in the spacers that separate the double-pancake modules. We believe this is the first time that a protection system compatible with a real user magnet system has been demonstrated in a YBCO coil. We anticipate ordering the Nb-based outer coils and YBCO tape for the inner coils in early-2012 with the system operational in late 2013. This magnet will not only serve as a unique user facility at the NHMFL but will also serve as a stepping stone in the development of a 30 T NMR magnet as advocated by the Committee on Opportunities for High Magnetic Field Science (COHMAG) report (2005) which laid out ambitious 10 – 15 year goals for magnet technology.

The NHMFL is one of the world’s leading institutions in the design and fabrication of magnets using cable-in-conduit conductor (CICC). Presently we are constructing new hybrid magnets for the NHMFL and for the Helmholtz Center Berlin (HZB), Germany. The NHMFL magnet will be used for NMR experiments in addition to more traditional high field experiments, and the HZB magnet will be used for neutron-scattering experiments. 2011 brought many milestones, principally:

1. The delivery of the last of the Nb$_3$Sn cable-in-conduit conductors (CICCs) required for the HZB and NHMFL magnets,
2. Completion of winding of the model coils,
3. Start of winding of the CICC coil for HZB,
4. Delivery of the refrigerators for both the MagLab and HZB. The HZB system is expected to be complete in 2013 with the NHMFL system following in 2014.

Present magnet designs for pulsed, resistive, and superconducting systems are limited by either the critical current density, strength, stiffness, or fatigue life of the available materials. For many years we have been nurturing high temperature superconductors (HTS) as the route to a transformational magnet technology that is bringing superconducting magnets closer to the field limits that can be achieved by DC resistive technology. Cuprate HTS materials have been developed as conductors for electric utility use since the late 1980’s, but it is only in the last 4-5 years that they have emerged into viable consideration for making high field magnets that extend beyond Nb$_3$Sn. In 2009 we started, consistent with COHMAG’s recommendation for greater inter-institutional collaboration in new magnet technologies, a new collaboration of 6 institutions, Very High Field Superconducting Magnet Collaboration (VHFSMC), jointly led from the NHMFL and Fermilab, to evaluate round wire Bi-2212 for high field superconducting magnets suitable for High Energy Physics applications. This work has demonstrated paths to much higher conductor critical current density and makes a good case for round wire Bi-2212 as a viable new HTS conductor technology for high field magnets.

Despite 2011 being the 50th anniversary of the discovery of Nb$_3$Sn as a high-field superconductor, the behavior of filamentary Nb$_3$Sn conductors particularly in the transposed, open-space environment of CICC conductors has needed detailed exploration, both for the series-connected hybrid and for the International Thermonuclear Experimental Reactor (ITER) magnet systems. Understanding the mechanical and cracking performance of filaments has been one facet of our work for ITER this year, as has been an understanding of the low temperature crystallographic state.

The vortex-pinning mechanisms that determine the upper limit to J_c, as well as the current-limiting mechanisms that degrade this limit, were studied for industrial YBa$_2$Cu$_3$O$_{7-x}$ (or more generally their rare-earth variants REBCO) and Bi-2212 conductors at fields up to 31 T. The potential of the low anisotropy and still very high upper critical field (well over 50 T) ferropnictide superconductors remain under study as potential future conductors. Mechanisms affecting the strength and conductivity of high-strength copper alloys for resistive and pulsed magnets were discovered. Work studying the conductors needed to understand fatigue and embrittlement of stainless steels for the CICC magnets of ITER continued. Theories and experiments to understand the huge variability of superconducting RF cavity performance were developed.
DC Magnets

A novel split magnet for photon scattering experiments at the Magnet Lab is operational! Fabrication and assembly of all system components was finished in May (under budget and on schedule) and the magnet was successfully charged to a world record magnetic field in June 2011. The magnet has been used successfully at the design field of 25 T (Figure 1), but routine operations will be limited to 22 T until spare coils are available. In addition to being the highest-field split magnet in the world, this magnet also has an unusually large scattering space consisting of four elliptical ports at the mid-plane which combined provide 0.5 steradians of solid angle for scattering! By choosing the location of the light source appropriately, any scattering angle can be studied!

The magnet consists of 4 coils electrically in series. The innermost coil consists, in turn, of two sub-coils electrically in parallel. In a split solenoid, the magnet must accommodate numerous conflicting constraints; over half the mid-plane must be devoted to vacuum space. The remainder must include (1) sufficient structure to support ~500 tons of force between the two halves of the magnet, (2) sufficient conductor to carry 160 kA between the two halves, and (3) sufficient free space to carry 220 liters per second of cooling water. To address these constraints a new magnet technology, the Split Florida-Helix, has been developed and patented for use in this magnet and is employed at the mid-plane of the two innermost coils (Figure 2). Due to the high complexity of these parts, we were unable to identify an appropriate commercial supplier and developed in-house capability to perform 5-axis wire electro-discharge machining (EDM).

In order to minimize the overall cost, disks for the three outer coils are fabricated from a single sheet of copper (parts nested concentrically). However, discs for different coils used different manufacturing technology being performed by different vendors on different continents. The outermost D-coil discs have utilized existing stamping dies located in France. The C-coil was manufactured from the “drop” from the D via chemical etching in the United States and finally the B-coil discs were manufactured in a U.S. stamping house. This logistic coupling provided a considerable challenge for the schedule which was only met by maintaining exceptionally active communications with the various vendors. Other important milestones included the successful pressure tests of the vacuum chamber (10e-6 torr) and hydro-testing the split magnet housing (40 bar) as well as completion of the 4 split Florida Helix parts (fabricated in house by new 5-axis wire EDM).

As of early 2012, the new 25T Split Magnet has been successfully used in various user experiments operation for over 1200 MWhrs. Currently, the Magnet Lab is building a spare set of the innermost, highly-stressed coils that should be complete in spring 2012. This magnet housing was built with a bearing allowing it to be operated either with the bore vertical or horizontal. In coming years a few pieces of peripheral equipment will be built to allow operation in either mode. We have also submitted a proposal to build another set of inner coils with a larger gap to allow a cryostat to be installed perpendicular to the bore so that samples can be rotated about an axis perpendicular to the field direction.

Due to the heavy workload associated with the split magnet, only 6 spare coils for the resistive solenoids were constructed in 2011, only 60% of that of typical years. In early 2012 we intend to catch up on construction of spare coils.
Pulsed Magnets

The NHMFL pulsed magnet group is responsible for development and operation of both generator-driven and capacitor-driven pulsed magnet systems. The mission is in direct response to the NSF charges to provide the highest fields for science, and to develop new materials and magnet technology.

Work in 2011 focused on: (1) enhancing generator-magnet operations and diagnostics to improve system reliability, (2) production and testing of the Insert Magnet Upgrade to achieve a record field of 97.4 T in August with user operations at 95 T, (3) production of user magnets for the NSF Pulsed Field Facility, and (4) the resumption of a pulsed magnet materials program via a summer school in Los Alamos.

Generator Magnet Operations and Diagnostics

The NHMFL Pulsed Field facility in Los Alamos has operated an 85 T science program since 2006. This science program is a long-term partnership jointly funded by the U.S. Department of Energy – Office of Basic Energy Science, and the National Science Foundation – Division of Materials Research. The division of responsibility has been that the DOE-BES program supports the science and that the NSF-NHMFL program supports the magnet operations and development. The 85 T science magnet held the world-record for maximum nondestructive pulsed magnetic field, 88.9 T, from October 2006 through June 2011. The magnet system still holds the record for continuous non-destructive pulsed operations above 85 T, at >257 pulses. The magnet system is a unique unmatched resource for high field scientific research.

Activities in year 2011 focused on the implementation of improved diagnostics in preparation for the introduction of the 10-mm Insert Upgrade. Diagnostics work focused on the systematic monitoring of coil resistances to ensure more reliable operations and improved prediction of insert magnet faults. Additional work included the development and implementation of an in-situ strain and vibration monitoring system on the outsert magnet. The new vibration diagnostic enhanced our understanding of the multi-coil mechanics during pulsed operations; and was successfully implemented with the 10-mm insert upgrade magnets.

Production and Testing of the Insert Magnet Upgrade

Construction of two upgraded insert magnets began in August of 2010. The upgraded inserts were completed in March and July 2011. (See Figures 3 and 4.)

A review examining the feasibility of extending the outsert magnet’s field from 37 T to 42 T was completed to determine base-plateau fields for insert operations. The analysis factored in the 2008 coil upgrades to determine the risks associated with increasing outsert magnet field production to 42 T. We determined that 95 T operations were feasible with an outsert plateau field of 37 T, and that 39 T outsert fields were acceptable for operations between 95 T and 97 T.

Commissioning of the first insert upgrade was completed in August 2011. A world-record field of 97.4 T was achieved on August 19, 2011. Magnetic field measurements were made by detecting De Haas-van Alphen oscillations in poly-crystalline copper. (See Figure 5.) Scientific operations were approved at pulsed fields up to 95 T. Seven separate physics experiments were completed above 92 T in 2011. Six separate scientific publications were in process of acceptance as of January 2012. 92 T – 95 T science operations are planned for 2012. The facility has spare insert upgrade magnets, and a spare 85 T capable insert to support the high field science program.

NSF User Magnet Production

The pulsed magnet group supports the operation of five scientific user stations and inserts for high-field operations up to 95 T. The 2011 work for the NSF Science Program entailed the delivery of three 65 T pulsed magnet assemblies and two insert upgrade magnets.

Pulsed Magnet Materials Program

The NHMFL Pulsed Field Facility conducted a summer-school focusing on high yield-strength, high-conductivity materials for pulsed magnet applications. The effort is intended to rejuvenate the research and development focus on materials for pulsed magnets. Such activities are critical to the long term development of pulsed magnet technology for the NSF Pulsed Magnet Program’s future. The summer school students examined electro-mechanical
High-Strength Materials

The high-strength materials program plays an important role in building high field user magnets, particularly for new generation magnets. To provide users with the highest field possible and to ensure the safe and reliable performance of the high field magnets, it is necessary to develop new high strength materials and establish a relationship among fabrication procedures, microstructure and properties of the magnet materials. This section reports our activities in characterization and development of high-strength normal conductors and structural materials for high field magnets. Some insulation-development activities are also included.

Conductors

Currently, for materials with electrical conductivity higher than 70% of the International Annealed Copper Standard (IACS), composite conductors achieve the highest strength. Cu-Nb and Cu-Ag composites are used in pulsed and DC resistive magnets, respectively.

The conductors are fabricated by cold rolling or drawing that introduces lattice distortions and high densities of interfaces in the material. During operations in magnets, the conductors are regularly exposed to temperatures higher than ambient, which may affect the characteristics of the lattice distortions and the interfaces and the mechanical properties of the conductors, such as the tensile and yield strength, as well as the electrical conductivity of the composites. Understanding the performance of the conductors after they are exposed to high-temperature heat-treatments helps one to make good use of them for magnets and to manufacture conductors to meet the requirements of the magnets, particularly when the magnetic stress reaches the limit of the mechanical strength of the conductors. This portion of research uses the Cu16at%Ag sheet as a template to relate microstructural features to mechanical tensile strength and electrical conductivities after the composites are heat-treated at various temperatures. The examinations are undertaken both parallel and perpendicular to the rolling direction of the sheets.

The curves in Figure 6 demonstrate that the heat treatment of the samples up to 300°C result in no change of the elastic properties of the materials. Within strains of 1.8% or before the yield, the strain hardening rates, dσ/đε’s, of all the samples are almost the same, where σ and ε are the stress and strain, respectively. The dislocation activities control the dσ/đε of the materials. When materials have a strong ability to accumulate dislocations, the materials usually have high strain hardening rate. Therefore, the stress-strain curves of the materials in Figure 7 indicate that the stress variations are not directly related to the activities of high densities of dislocations.

The accumulation of dislocations by deformation is an effective approach to make high yield-strength conductors because it introduces a limited increase in electrical resistivity. However, the storage of dislocations at room temperature is limited by recovery, i.e. dislocation/defect annihilation, and hence the strength reduces when the materials are thermally heat-treated at elevated temperatures. For instance, Cu was reported to recover at temperatures as low as 150°C and significantly lower strength/hardness reductions occur at this temperature or higher for strain-hardened Cu. Figure 7 shows that the compos-

![Figure 5](image1.png)

Figure 5. Waveform of 97.4 T record pulse achieved at NHMFL Pulsed Field Facility August 19, 2012.

![Figure 6](image2.png)

Figure 6. A comparison of stress-strain curves of reduced cross-section samples heat treated at various temperatures (in Celsius, °C). The thin straight dashed line is used to indicate and estimate the engineering yield stress (stress levels at 0.2% strain of offset).
The fatigue life depends on the operation mode. If the operating conditions for the conductors in the magnets are stress-controlled, the designed stress values in magnets can be used directly as the stress levels for fatigue tests. Even if the magnets are operated in displacement-controlled mode, stress-controlled fatigue test data is a necessary step for further displacement-controlled tests. In 2011 we generated a large amount of data on GlidCop in stress-controlled mode suitable for pulsed magnets. The data are conservative with respect to magnet design because this load case is equivalent to no reinforcement material being present in the magnet system. Our magnet uses strong materials with high strength and elastic modulus as reinforcements that operate in their elastic ranges and the conductor is constrained by the reinforcement materials, resulting in an operating mode close to a displacement control mode. Later in 2011, we did cyclic tests using the displacement-controlled mode. The test results help us to estimate the maximum field and life achievable of our “100 T” pulsed magnet.

The other high strength normal conductors we have been working on are the electro-deposited Cu. We were able to reproduce the Cu with high density of twins with [111] texture, that is the twinning plane for the conductors, using electro-deposition. Similar electro-deposited Cu is currently used as stabilizer for ReBCO conductors for 32 T all-superconductor magnets and other magnets. The research in this area helps us to understand the performance of the Cu stabilizer in a timely manner.

The as-deformed samples give electrical conductivity slightly below 75 IACS%. **Figure 7** shows a relationship between the electrical conductivity and annealing temperatures. The electrical conductivity shows almost no change below 200°C, which starts to increase with annealing temperatures when temperatures reach 200°C or higher. At temperatures above 200°C, the rate of the conductivity increase with temperature appears to drop. A comparison of the CuAg composites annealed at different temperatures reveals a correlation among the microstructure and properties. The composites show anisotropy in both mechanical strength and electrical conductivities.

The major parameters in our material are the density of the interfaces in unit volume and lattice distortions because the dislocation density is relatively low and plays a relatively minor role. The shear bands that are related to lattice distortion in the materials can only be observed in transverse direction in the sheets but not in the cross-section perpendicular to rolling direction. The anisotropy of material properties can be related to the anisotropy of microstructure described by both the shear bands and texture. The property variations with temperature can be described by change of the microstructure parameters of the strengthening component. Increase of the annealing temperature up to 200°C results in no significant change of the microstructure that can be resolved by the scanning electron microscopy (SEM). When temperature reaches 250°C, local spheroidization can be observed. The composite can be divided into eutectoid and proeutectoid components. The major spheroidization occurs in Ag in proeutectic regions but it can also be found in eutectic regions. Increasing the temperature up to 350°C spheroidizes both components in more areas. (**Figure 8**) In some of the areas, complete circular Ag particles can be observed. At this stage, the strengthening effects via nanostructure are dramatically reduced, resulting in a reduction of mechanical strength to 500 MPa, that is close to the strength achievable by accumulation of dislocations in pure Cu. However, in samples examined after being heat treated at all the temperatures, the traces of shear bands can still be observed. Therefore, all samples before and after annealing with the temperatures prescribed in this report show higher tensile and yield strength but lower electrical resistivity in transverse directions than those in rolling direction, indicating the anisotropy in the materials even after the annealing.

GlidCop is another type of composite conductor composed of Cu and nanosized Al2O3 and being used for pulsed magnets. The conductors in pulsed magnets operate in the plastic deformation range in cyclic mode and fatigue properties have been addressed by fatigue tests in 2011, mainly for reaching 97 T in the LANL facility.
Structural Materials

The researchers at the Magnet Lab continue to make efforts in production of high strength MP35N strips for pulsed magnets. In 2011, about 10 coils of MP35N were heat treated at the NHMFL with reproducible quality, and large numbers of tests (usually at least eight samples are tested for each coil) were conducted at both room and cryogenic temperatures. MP35N (35wt%Co-35wt%Ni-20wt%Cr-10wt%Mo) is one of the reinforcement materials with high Young’s modulus (>220 GPa). Traditionally, MP35N is described as a multiphase cobalt nickel alloy because some cobalt-nickel alloys are work-hardened by formation of the stress-induced hexagonal-close-packed (hcp) phase in platelets within a face-centered-cubic (fcc) matrix. However, other studies on the role of fcc to hcp transformation suggest that work hardening of the MP35N alloys is not due to the formation of the hcp phase, and for the alloys with Co:Ni ratios (wt%) less than 45:25, it was not possible to detect the stress-induced hcp phase by X-ray diffraction techniques. Instead, the materials were considered to be strengthened by formation of deformation twins in the fcc matrix.

Recently, it has been recognized by researchers at the NHMFL that deformation introduces mainly planar defects or stacking faults in the fcc matrix and we will continue to make efforts to understand this material in order to serve the users better. The cold-deformed MP35N multiphase alloys can be further hardened by aging or heat treatment. After the materials reach the maximum strength at a defined temperature range, additional aging time contributed no further increase of the strength. Most applications use the materials aged between 540° C to 600° C for four hours. However, other sources reported that when swaged multiphase alloys were aged for more than four hours at 699° K, further increase of yield strength was able to be achieved. Therefore the optimum aging temperature and time remain a topic of research and appear difficult to control. Therefore, the vendors usually supply the materials in cold-deformed form and the NHMFL develops the aging procedure, performs the heat treatment and conducts the mechanical tests for user pulsed magnets.

REFERENCES

HTS Magnets & Materials

So far, the low temperature superconductors Nb-Ti and Nb,Sn have been used for virtually all superconducting magnets. Their maximum field, however, is limited by their upper critical fields (H_{c2}) of about 15 T for Nb-Ti and 30 T for Nb,Sn, which limits their highest practical field to about 23.5 T. This limit is imposed by the rapid decrease in critical current density J_c as H_{c2} is approached.

The cuprate-based high temperature superconductor (RE)Ba$_2$Cu$_3$O$_{y}$ (REBCO, RE = Rare Earth) has the capability to substantially transform the technology of high field magnet systems. REBCO has an H_{c2} that exceeds 100 T at 4.2° K, removing the H_{c2} and J_c limit that restricts usage of Nb,Sn in high-field magnet systems. REBCO conductors were initially developed for power transmission cables, but there is great interest nationally and internationally in the application of REBCO to high field magnets.

Powder-in-tube (PIT) processed Bi$_2$Sr$_2$CaCu$_2$O$_{y}$ (Bi-2212) round wire is another very promising HTS conductor for high field magnet applications: its upper critical field reaches beyond 100 T, and it still retains a J_c of nearly 105 A/cm2 at least up to 45 T. Ag-alloy clad Bi-2212 round wire is advantageously magnetically isotropic and easily adaptable to a Rutherford-cable geometry. To efficiently apply Bi2212 round wire in a magnet application, thorough understanding and control of the thermal processing of the conductor is a necessity.

The recently discovered Fe-based superconductors (FBS) exhibit intrinsic properties that turn out to be potentially of interest for applications. In fact they have critical temperatures T_c up 55° K, upper critical fields H_{c2} exceeding 100T and low anisotropy.

The Magnet Lab is active in developing all three of these conductors and the associated coil technologies to enable a transformation in high-field superconducting magnet technology, not just for general purpose solenoids, but for NMR magnets and accelerator magnets.
32 T All-Superconducting Magnet

The Magnet Lab is engaged in the development, design, and fabrication of a 32 T all-superconducting magnet based on REBCO High Temperature Superconductor (HTS). The development of magnet technology to utilize REBCO conductors is still very much in the development phase. The 32 T project at the laboratory, while strongly development-oriented, has the obligation of producing a substantial magnet system for installation in the milliKelvin facility as a user magnet. The 32 T magnet is shown in Figure 9.

The specifications of the 32 T magnet were chosen as a balance between providing a fully useful magnet for the science program, while limiting the size, cost and risk of this first-of-a-kind magnet. The clear cold-bore is 32 mm, large enough for an eventual dilution refrigerator with sample diameter of 25 mm. The field uniformity specification is 500 ppm in a 1 cm spherical volume. The ramp-time objective of the magnet is one hour to full field. In addition to the inner high-field REBCO coil section, the magnet includes a large Low Temperature Superconductor (LTS) outer magnet that will be procured commercially. Experience with REBCO test coils shows them to be very stable, which is attributable to the large critical temperature, but the ramp rate objectives of 32 T are not automatically assumed. While the outer magnet at 15 T central field contribution is well within the range of application of LTS conductors, the outer magnet is relatively large and the ramp characteristics are difficult to design and anticipate. And even the inner REBCO coils will experience an internal energy dissipation upon ramping that is not entirely known. The thermal conduction of the REBCO coils will determine the extent to which the internal energy dissipation results in a temperature rise in the windings, and any related limitation to the ramp rate.

The 32 T magnet will be built at a large capital cost relative to conventional resistive magnets of the same field range. This will continue to be the case for REBCO magnets after the cost of technology development is reduced. But 32 T is the bottom of the expected field range of application of REBCO conductors, and the broader technology is expected to enable large magnets that are outside the field range of resistive and hybrid magnet technologies in their present form.

A variety of limitations need to be addressed in the 32 T project. Fundamentally, there is a general lack of experience with REBCO coils. The conductor is relatively expensive. The 32 T project is not simply technology development, but the end result must be a usable magnet. The lack of experience influences design decisions to limit risk. There are technical limitations in the conductor as well. The critical current is strongly field-orientation dependent, with the result that the radial field at the solenoid ends greatly limits the achievable current in the magnet. There are workarounds to this problem, including the use of wider conductor at the coil ends, or the use of a separate power supply with different currents in coil sections, but all such approaches come at a cost and risk.

A fundamental solution to conductor field orientation dependence has been difficult to achieve. Another technical limitation associated with the conductor, and the downside of the desirable increase in coil stability, is difficulty with quench protection. The very stability of the conductor limits the natural propagation of quench in a coil, and thereby limits the effectiveness of conventional quench protection procedures. The ability to quench a magnet quickly is related to the amount of stabilizer copper that is needed on the conductor, which in turn is related to the overall current density, the compactness of a magnet, and the ability of the design to manage stress. There are indications that design approaches will be possible with REBCO conductor that limit the amount of needed stabilizer copper and that provide the highest current density in the windings. This aspect of REBCO magnet technology is presently unresolved in general and is the subject of ongoing development. A protection concept was selected for 32 T that has now been demonstrated in test coils that, while not resulting in the highest imaginable current density, appears to be a practical present solution.

The general lack of knowledge and the early stage of development of REBCO magnet technology are being addressed at the MagLab in a broad program of technology development. The 32 T project identified the areas of conductor electrical characterization, conductor mechanical characterization, conductor and turn insulation, and small coil development. The output of this effort has already greatly expanded our understanding of REBCO conductor and magnet technology.

Extensive characterization of conductor has been made on the latest production of REBCO tapes from SuperPower. We focused on relatively
inexpensive and fast methods of testing long lengths of tapes, explored correlations between 77 K and 4.2 K properties, characterized tapes at elevated temperatures for quench models, and investigated their strength under high currents and high magnetic field conditions. We built several new probes to make fast characterization at fixed angles between field and conductor, especially at the critical angle of 18° expected at the ends of the magnet. To collect broad statistics, we measured critical currents for a large number of samples, as well as in long lengths of tapes using the YateStar reel-to-reel method at 77 K. These data were then compared to the values collected at 4.2 K. Sadly we found only a weak correlation between 77 K and 4.2 K critical current values, as shown in Figure 10. This must be due to different vortex pinning mechanisms dominating at high and low temperatures, a factor that we are still working to understand better, since this may give important guidance on how best to develop these tapes for future high field magnet use.

Two REBCO development coils have been fabricated and tested in the 20 T background field of the Large Bore Resistive Magnet in the DC Field facility of the NHMFL. The coils, shown in Figures 11 and 12, have one and six double-pancake modules respectively. The coil size was chosen to be large enough to address full scale features of the 32 T coils, yet small enough to conserve conductor and fit the available test facilities. The coil construction includes winding mandrels, inside and outside crossovers, in-line joints, co-wound reinforcement, terminals, overbanding reinforcement and insulating spacers that are full featured components for 32 T. The coil fabrication required fixtures and processes for joint, crossover and terminal soldering, and reinforcement co-winding and overbanding. The conductor used had 50 μm copper per side, essentially as would be used in 32 T, to provide experience in the fabrication, handling and performance of conductor with this amount of copper stabilizer. The coils both contained protection heaters embedded in the spacers that separate the double-pancake modules. Coil 1 heater elements were varied in size for initial tests. Coil 2 heaters began to demonstrate a design and fabrication of the heater elements that will be used in 32 T.

Both coils were tested in a similar manner in a 20 T background field. Their operating current at 32 T will be 170 – 180 A. This current level was simulated by operating the test coils to 200 A. At this level, the protection heaters were studied by activating the heaters and quenching the coils numerous times. Following the heater tests, higher currents were introduced into the coils to study the effect of higher stress in the windings.

Both coils generally performed well, were extremely stable, and provided valuable information on heater behavior and other aspects of the coil design.

Other REBCO Coils
Layer Winding
One of the goals at the NHMFL is to develop the necessary technology for the next generation of high-field magnets including Nuclear Magnetic Resonance (NMR) quality magnets. To reduce the number of resistive joints and achieve the required field homogeneity for NMR, layer-winding is highly desirable. A series of small test solenoids have been wound using REBCO coated-conductor tape made by SuperPower Inc. One of these coils was recently tested in a 31.2 T resistive magnet, generating an additional and steady magnetic field of 4.2 T for a total of 35.4 T (Figure 13). The introduction of a thin-walled heat-shrink tube around the conductor that mechanically decoupled the HTS tape from the epoxy encapsulant significantly contributed to the success of this coil. The coil demonstrates that layer-winding a very high-field superconducting coil, working at high stress levels >340 MPa and conductor current density $J > 500$ A/mm², is possible. The coil was quenched safely multiple times without any measurable degradation of its...
This layer-wound coil and earlier prototype pancake-wound coils demonstrate that REBCO coated conductors have developed into a suitable basis for a new superconducting magnet technology that allows major advances in magnetic field generation at 4.2 K. Because of its low anisotropy and high irreversibility field at temperatures well above 50 K, this REBCO conductor may also allow a cryo-cooled magnet technology for generating fields of 5 – 15 T in the 30 – 50 K range. The terminal design and conductor insulation approach have resulted in two patent applications.

REFERENCES

Bi2212 Conductors

Powder-in-tube (PIT) processed Bi$_x$Sr$_2$CaCu$_2$O$_{8+y}$ (Bi-2212) round wire is one of the two most promising HTS conductors for high field magnet applications: its upper critical field reaches beyond 100 T, and it still retains a J_c of nearly 105 A/cm2 at least up to 45 T. Ag-alloy clad Bi-2212 round wire is advantageously magnetically isotropic and easily adaptable to a Rutherford-cable geometry. To efficiently apply Bi2212 round wire in a magnet application, thorough understanding and control of the thermal processing of the conductor is an absolute necessity. Various short and intermediate size samples have been heat-treated and characterized regarding superconducting and microstructural properties. A key finding is that the critical-current density, J_c, depends on the time in the melt rather than on the maximum applied processing.

Insulation

Insulation technology is essential for very high field magnets. However, finding a reliable insulation system is very challenging due to the required minimal thickness, the extreme working environment and potentially high voltage in addition to high mechanical strength. In 2011, MagLab researchers continued to make efforts to develop insulation materials focusing on ceramic SiO$_2$ insulation strengthened by Al$_2$O$_3$. Currently the insulation can be applied to stainless steel. The advantage of this scheme is that there is no restriction on insulation process temperature such as in the direct coating on the surface of the conductors with a possible damage by high-temperature coating-process. The Al$_2$O$_3$-SiO$_2$ films are coated through a sol-gel process which is a novel coating method where fine ceramic powders are dispersed in a type of suspension solution which is dip-coated on the substrate and heated to bind the powder phase internally and overall coating to the substrate. This method combines properties of the conventional sol-gel technique with the ability to produce much thicker and adherent films through the control of microstructures and avoid cracking in thin coating during the densification. The final product is a ceramic composite material consisting of a SiO$_2$ thin-film strengthened by Al$_2$O$_3$ dispersed particles. The technology will be used for construction of the insert of 32 T all-superconducting magnets and potentially useful for other high field magnets.

FIGURE 13. Layer-wound coil mounted on the probe. The coil is 64.5 mm long, with an inner diameter of 14.3 mm, and an outer diameter of 38 mm. The total length of conductor used is ~100 m.

FIGURE 14. Plot of the quench currents vs. magnetic field for two bath temperatures: 4.2 K and 1.8 K. Helium gas trapping close to the terminal of the coil caused some heating and reduced quench currents in the field region above 20 T.
temperature. This is important because the prevalent thinking in the magnet building community was that it would require furnace temperature control of 1 – 2°C to be able to achieve the maximum J_c in coils with large thermal masses, which is difficult to achieve. With this understanding, it is possible to design heat-treatments that will be manageable for a large thermal mass inside a large industrial furnace. These studies also addressed another serious issue that is the disruption of the current path caused by bubble formation in the Bi2212 filaments, which occurs during the melt stage of the heat treatment. To visualize the bubble formation and their impact, a variety of methods were used: Filaments were extracted from a specially designed wire with a 27x7 filament count. Electromagnetic properties and microstructures of these filaments clearly show the significant impact bubbles play in limiting J_c. In another approach that was carried out in collaboration with CERN, x-ray tomographs were taken while samples were being heat treated (Figure 15). This allowed visualizing the evolution of void-space during all stages of the thermal processing. There are indications that the bubble-formation is due to gas expanding in the wire and that the gas might be N_2 from the atmosphere, and/or CO_2 and H_2O picked up as CO_2 and H_2O from the atmosphere, or formed from organic impurities in the powder or introduced when the wire is fabricated. We started chemical analysis of the 2212 powder and wires to determine what may be causing the expansion and even bursting of the wire. Preliminary results show that the C and H contents are much higher than the 20 – 50 ppm wt. levels typically seen in AMSC 2223 wire.

We hypothesized that decreasing the bubble density in the filaments would increase the active cross section of current-carrying 2212 in the core of the filament, which would increase J_c. To test this hypothesis we used 2 GPa CIPing (cold isostatic pressing) to densify the filaments in green wire. Short samples showed that CIPing increased J_c and J_e by about a factor of two compared to non-CIPed samples. An alternative approach applied by OST using swaging to densify the samples showed very promising results too. Our studies indicate that removing void space and bubbles requires distinct operations: (1) controlling gases and (2) densifying the 2212 powder in the wire. High current coils with low inductance will require some sort of cabling of the conductor. We heat-treated Rutherford cable samples that were manufactured from OST wire at LBNL and FNAL to test for the occurrence and location of leakage. Of particular importance is the finding that we did not see leakage from the edges of the wires where the cabling processes deforms the filaments the most.

REFERENCES

Bi2212 Coils

Bi-2212 round wire has significantly improved compared with Bi-2212 tape conductor from a few years back. Bi-2212 conductor is available in the most versatile round wire geometry in batch lengths of around 300 m. Virtually leak-free wind-and-react coils are now possible and show fairly consistent performance in high fields. Due to the complexity of the Bi-2212 phase-formation in combination with the wind-and-react approach, however, there is still understanding to be developed in order to process coils with even more consistent performance and higher critical current densities. Coils of various sizes have been wound, heat-treated and tested in high background fields. Various coil processing and engineering issues have been addressed and solutions have been found. Coils can be manufactured and heat treated yielding homogenous transport properties throughout the winding pack. One Bi-2212 coil generated 1.1 T in a 31 T background field, making it the first wire-wound coil to reach beyond 30 T. The transport current densities, \(J_c \), of coils, however, are still consistently lower than those of short samples. In addition winding current densities, \(J_w \), are reduced due to the significant thickness added by the alumino-silicate braid insulation. From the results of the conductor R&D work it is now known that porosity inside of the conductor is a leading cause of reduced transport-properties in long conductor-lengths and approaches have been identified and applied to successfully reduce porosity and consistently increase transport properties. Coil-processing concepts that target the reduction of porosity have been developed and are currently waiting to be tested in coils: Among these concepts are the use of Cold Isostatic Pressing (CIP) to densify a complete coil as well as the use of swaged or otherwise densified conductor before coil winding. The use of swaged conductor is an approach that is being developed in close collaboration with the conductor manufacturer Oxford Superconducting Technologies (OST) \((\text{Figures 16 and 17})\).

A 20 layer thick and 21 turn tall coil, made with alumino-silicate braid as insulation and instrumented with a set of thermocouples on various coil radii, has been wound and heat treated \((\text{Figure 18})\). The measured heat-treatment profile clearly showed that the time constant of the coil fit well with the standard heat-treatment parameters and the coil could be processed homogeneously throughout all of its layers. In-field testing is anticipated for the next available time slot in the large-bore resistive magnet.

To address low \(J_w \) in coils, part of the R&D work focused on finding alternatives to the thick and also chemically incompatible alumino-silicate braid conductor insulation. Three alternative insulation routes are pursued, two sol-gel coating routes are being pursued, one in collaboration with the University of Harran, Turkey, and one in-house. A third route pursues the application of a ceramic-particle-filled polymer provided by a commercial vendor. Short conductor piece lengths and spirals coated with this material from the commercial vendor yielded homogeneous dielectric properties at thicknesses of about 13 μm after heat treatment show promise to significantly increase packing density in coils \((\text{Figure 19})\).

REFERENCES

The recently discovered Fe-based superconductors (FBS) exhibit intrinsic properties that turn out to be potentially of interest for applications. In fact they have critical temperatures \(T_c \) up to 55 K, upper critical fields \(H_{c2} \) exceeding 100 T and low anisotropy. However, in order to determine the real FBS potentialities several requirements are necessary. From the material point of view, high critical current-density, \(J_c \), with weak field-dependence, irreversibility field as close as possible to \(H_{c2} \) and transparent grain boundaries are necessary. From the technological point of view, it is essential to develop round wire or low-cost tapes capable of obtaining the same performances found in single crystals and thin films. Unfortunately the FBS compounds with largest \(T_c \), the REAsFeO\(_{1-x}\)F\(_x\) (RE=La,Sm,Nd,...) or RE-1111, have shown granular behavior with a global \(J_c \), 2-3 orders of magnitude lower than the local \(J_c \). The reason of this suppression was found in secondary phases (FeAs and RE,O\(_3\)) that wet the grain boundary and act as current-blockers. As a consequence the interest moved to the cobalt and potassium doped BaFe\(_2\)As\(_2\) (Ba122) that, despite the lower \(T_c \) (~25–38 K), have weaker grain boundary problems. In the case of Co-doping Ba122, we demonstrated the high tunability of the pinning properties thanks to the introduction of a high density of non-superconducting nanorods that strongly decrease the \(J_c \) field-dependence and the \(J_c \) anisotropy. In the case of K-doped Ba122, we studied the doping dependence of \(H_{c2} \) (Figure 20) showing that at the optimal doping \(H_{c2} \) reaches 100 T with anisotropy close to 1. Moreover a new low temperature synthesis technique has been developed in our laboratory in order to obtain high quality polycrystals with clean grain boundaries and high global current. Figure 21 shows a TEM image of a typical K-doped Ba122 grain boundary revealing absence of wetting phases. The same material was powdered and used to prepare a powder-in-tube (PIT) round wire. The obtained transport \(J_c \) exceeds 0.1 MA/cm\(^2\) at self-field and flattens at 10 kA/cm\(^2\) at about 10 T (Figure 22). Those values are more than 10 times better than any other FBS material in randomly oriented form.

These preliminary results on the Ba122 phase are promising, even if further optimizations (like the possibility to introduce nanometric defects, overdoping or multicore wiring) have to be considered in order to improve the in-field behavior and the grain boundary properties.

![Figure 20](image1.png)

FIGURE 20. \(H_{c2} \) of three Ba\(_{1-x}\)K\(_x\)Fe\(_2\)As\(_2\) single crystals at different doping levels with magnetic field parallel to c and ab measured at NHMFL.

![Figure 21](image2.png)

FIGURE 21. High resolution TEM image of a typical K-doped Ba122 grain boundary. There is no indication of a wetting impurity phase.

REFERENCES

15. J. Weiss et al., manuscript in preparation.
CICC Magnets

Several milestones have been reached in the continuing construction of the two Series-Connected Hybrid magnet projects including: the cable-in-conduit conductor (CICC) fabrication, coil winding, joint development, cryogenic system delivery, protection and controls system design, and the model coil fabrication. These magnets will consist of a large Nb₃Sn/Cu CICC outer coil and a set of Florida-Bitter plate resistive inner coils and will provide unique capabilities with dramatic power savings compared to all-resistive magnets. One of the SCH magnets will be located at the Magnet Lab in Tallahassee and provide 36 T in a 40 mm bore with 1 ppm uniformity. The other SCH will be installed at the Helmholtz Zentrum Berlin (HZB) for neutron scattering experiments at 25 T.

The model coil was built in order to help develop fabrication techniques, components, and quality controls, as well as to train personnel and to have an instrument for demonstrating the heat treatment and epoxy facilities. Early in 2011 the winding of the model coil was completed. Some of the most important developments that came from the experience are the impedance measurements, which are used to check for electrical shorts, and how to build critical components such as lead anchors, ramps, and fillers. Other milestones completed with the model coil include the heat treatment and epoxy impregnation of the coil. A view of the model coil after its epoxy impregnation is shown in Figure 23. Valuable information on the temperature distribution through the coil and improvements in the procedures were obtained which will be used to tune the heat-treatment process for the production coils.

A major milestone was reached this summer with the successful completion of the CICC fabrication for the superconducting outsert coils. The CICCs consist of high J_c Nb₃Sn/Cu wires fabricated by the Rod-Restack-Process (RRP) and then twisted into a multi-stage cable and compacted inside of a stainless steel conduit. This type of conductor has two primary advantages over other superconducting cables: strength and stability. The stainless steel jacket is the main structural component of the coil that contains the electro-magnetic loads, which approaches 80 kN (18,000 lb) on one turn of conductor. Inside the steel jacket, the void space inside the cable represents about 30% of the internal volume. This will be filled with supercritical helium at 4.5 K during magnet operation. Having helium in direct contact with the superconducting strands provides a very stable superconducting environment. Heat generated through AC losses or friction can be efficiently swept away allowing for fast ramping of the coil and thus conducive to series connection to resistive coils.

The jacketing and compaction of the superconducting cables with the steel tubes was an international collaborative effort. The activities were conducted at a new CICC fabrication facility setup by part of the Italian Consortium for Applied Superconductivity (ICAS) group, with technical support by the NHMFL and HZB. Five piece lengths of CICC totaling about 2 km were fabricated for each coil; the longest single length is 590 m.

Coil fabrication has commenced with the winding of the HZB outsert coil. Seven of 18 layers have now been wound. All of the large high-field CICC have been wound into the first three layers and all of the mid-field CICC have been wound into the fourth through sixth layers of the coil. The ends of adjacent pieces of conductor have been spliced via a unique feature referred to as a splice-tie which results in a stronger coil-pack than traditional technology. Winding of the coil is shown in Figure 24. Following the winding of the HZB coil will be the winding of the NHMFL coil. The coil-reaction heat-treatment and vacuum-pressure epoxy impregnation will occur in the coil-processing facility at the NHMFL, recently put to test using the model coil. The ability to wind and process large Nb₃Sn CICC coils is not commonplace throughout the world. The MagLab’s capabilities have brought interest in potential coil construction for future CICC magnet projects at the High Field Magnet Lab (HFML) in Nijmegen, the Netherlands and ENEA in Italy.
milestone was crossed by completing the final joint tests. To demonstrate reliability in joint fabrication, four Nb$_3$Sn to Nb$_3$Sn joints were built in series and tested simultaneously. The joint resistance of 0.2 nΩ was an order of magnitude better than the target value of 2 nΩ and gives data and confidence that they can be made to high quality, repeatedly. Improvements in the NbTi bus bar joint were shown in another joint test. The NbTi joint-technology utilized compression contact only (for Nb$_3$Sn joints the strands are sintered together during the coil reaction heat treatment). The process has been improved by applying solder to the outside of the cable using induction heating prior to and after compaction into its copper jacket which serves as a terminal post in the joint. The application of solder on the outer surface of the cable has lowered the resistance threefold. The perimeter soldering using induction heating techniques still allows helium to flow freely through the joint box.

The HTS leads are at a critical stage as they are now set-up for prototype testing of one 4 kA element. Following this test, a full cost estimate for their construction will be prepared and evaluated against HTS leads that are presently available in industry.

The helium refrigerator was tested in the vendor’s factory in January, 2011 and showed that it has a maximum capacity of 880 W plus a liquefaction of 25 liters per hour. This capacity is almost 30% more than what was required. It has since been delivered, installed and commissioned (Figure 25) and it has been in operation quite frequently to produce liquid helium for the users at the MagLab. Other major cryogenic components have been installed including the main compressors, oil removal system, and several transfer lines. The final major component, the central distribution box (CDB), has had good progress in its manufacture with the large heads being completed. Delivery of this component is expected early in the second quarter of 2012. Following that, connection of the remaining transfer lines and 45 T magnet to the new refrigerator and CDB will commence.

Procurement of the major items requiring long lead times for the protection and control system has also been completed in 2011 (Figure 26). This includes items such as the dump resistor, diodes, high current switches, and circuit breakers, to name a few. Installation of the platform and many of these items will start in the first quarter of 2012.

Nb$_3$Sn for Cable-In-Conduit Conductors

Nb$_3$Sn was the first high field superconductor and is still the primary choice for coils developing magnetic fields above 11 T and up to 23 T; it is also an essential technology for high field NMR and the Series-Connected-Hybrid magnets being developed by the Magnet Lab. Nb$_3$Sn strand is produced on a large commercial scale in a variety of designs for different applications; two such types, “Bronze” strand and a “High-J_c” strand are shown in the comparative field/current plot in Figure 27. The performance of the “Bronze” strand in Figure 27 is typical of strands with low hysteresis loss designed for cyclic field loading as in the ITER tokomak reactor being constructed as an international collaboration in Cadarache, France. The MagLab is heavily involved in ITER, providing essential data on strand and conductor performance. The “High-J_c” strand is typical of strands designed for maximum critical current density, such as the MagLab’s SCHs, high-field particle accelerator magnets and compact cyclotrons; these strands are the focus.
of DOE-HEP sponsored research at the NHMFL.

A major drawback of Nb$_3$Sn is that it is extremely brittle and cannot withstand significant bending; this means that for most applications the coils are wound with strand that contains the components that are needed to react to produce Nb$_3$Sn and then a multistage heat-treatment is applied to the coil to produce the superconducting phase. Fortunately all the reacted Nb$_3$Sn filaments are embedded in a Cu(Sn) matrix which has a greater thermal contraction than the Nb$_3$Sn, which means that after cooling down each Nb$_3$Sn filament is surrounded by a protective compressive jacket. Sufficient bending, however, can move the Nb$_3$Sn strain state into the tensile regime where cracking can more easily occur.

In cable-in-conduit conductors (CICC), used for such applications as the SCH and ITER, the cabled strands are able move to some extent. In Figure 28 we show a cross-section from a prototype CICC for the ITER Toroidal Field (TF) coils (each Toroidal Field coil is 14 m high and 9 m wide) that has been image processed so that the Nb$_3$Sn and Cu strands have been shaded by adjacent feature count, revealing the increased separation of the strands. This illustrates the movement of the strands under the Lorentz force generated by the magnetic field and also the reductions in strand-to-strand mechanical support as the strands move further apart.

In addition to cable cross-sections, the individual strands are examined for their response to mechanical strain. A variety of ITER strands were subjected to extended cyclic tensile loading16 designed to simulated the long-term uniaxial tensile cyclic loading (30,000 cycles) of the ITER Central Solenoid (CS) coils expected during the lifetime of ITER.
It was found that strands needed to be loaded close to their tensile fracture strain before significant filament fracture occurred\(^{17}\). As we have not observed strand breakage in any CICC but we have observed extensive localized filament fracture it is clear that the culprit is not uniaxial tensile strain. In Figure 29 we show a longitudinal cross-section of strand extracted from the CICC shown in Figure 28, in which filament cracks have been marked in blue. The crack distribution and geometry of the strand is consistent with the fracture being due to bending strain (with the lower surface of the strand being the tensile side of the bend). The red dotted line represents the maximum crack concentration that was seen in strands tested under controlled bend conditions (TARSIS) at the University of Twente (collaboration with the group of Arend Nijhuis).

FIGURE 29. Filament cracks (marked in blue) in a strand extracted from the high field zone cable shown in Figure 27. The crack distribution strongly suggests that they are the result of bending strain with the lower surface being the tensile side of the bend. The red dotted line represents the maximum crack concentration that was seen in strands tested under controlled bend conditions (TARSIS) at the University of Twente (collaboration with the group of Arend Nijhuis).

Strand-Level Nb\(_3\)Sn Optimization

The central issue that complicates optimization of any Nb\(_3\)Sn conductor is that actually the composition varies from about 18-25at.%Sn and that ALL practical conductor forms include all compositions within the filament cross-section. A major difference between the low-hysteresis loss ITER-type strands and the “high-\(J_c\)” strands is that the geometries required to maintain filament separation for low coupling loss also result in lower and more inhomogeneous Sn contents in the Nb\(_3\)Sn. Thus the present status of Nb\(_3\)Sn strand is one based on compromise rather than complete optimization. There is still potential to significantly improve the performance of the strand if the variables influencing the properties can be fully understood. Since the \(T_c\) varies from 6-18 K with similarly large range of \(J_c\) and \(H_{c2}\) and filaments are as small as 3 \(\mu\)m in diameter, the actual extraction of this superconducting property distribution has seldom been performed on production strand. Characterization of superconducting properties by specific heat \((C_p)\) provides information about the critical temperature distribution in superconducting samples. \(C_p\) is a bulk measurement sensitive to the whole sample property distribution on the scale of the coherence length, \(\xi \sim 5\) nm, unlike magnetic measurements where, because of screening effects on a scale of \(\lambda \sim 250\) nm, internal regions of filaments with lower \(T_c\) are screened from view while regions smaller than the penetration depth give weak or no magnetic response. We are characterizing several Nb\(_3\)Sn wires from different manufacturers covering a wide range of production strands, from low hysteresis loss ITER-type strands to high \(J_c\) HEP strands. An example of the data that we can get from measuring the specific heat, a rather uncommon capability, especially when performed in fields up to 16 T as we can, is shown in Figures 30 and 31. A small sample of the whole conductor (which contains stabilizing Cu, diffusion barriers, residual bronze etc.) is measured and from this we subtract the phonon and electron contributions of the normal Cu, Cu-Sn etc. to extract only the electronic \(C_p\) of the superconducting phases, the Nb\(_3\)Sn filaments and any Nb or Ta in the diffusion barriers too. Figure 30 compares the specific heat for the baseline LARP OST-RRP\(^*\) strand heat treated over a range of final temperatures by Arup Ghosh and colleagues at BNL.

REFERENCES

The RRP® wires show an enhanced homogeneity and the heat treatment differences affect the jump amplitude of the Nb,Sn and Nb transitions. Increasing the reaction temperature used to form the A15 phase (Nb,Sn), the Nb jump becomes smaller and smaller, whereas the Nb,Sn transition become sharper with a more intense peak.

The deconvolution of the calorimetric data provides more quantitative information and the T_c-distribution can be determined. $F(T)$ is the integral from 0 to T of the T_c-distribution $f(T_c)$ and, thus, represents the volume fraction of sample with $T_c \leq T$ given by the relation:

$$F(T) = \int_0^T f(T_c)dT_c = \frac{S_e(t) - C_e(t)}{(n-1)\gamma T}$$

where C and S are the electronic specific heat and entropy at temperature T, γ is the Sommerfeld constant and n is a parameter defined in the Gorter-Casimir model. Figure 31 reports the $F(T)$ curves (obtained for the data in Figure 32) and their derivatives $f(T_c)$, are plotted in the inset.

The effects of the heat treatments reported in Figure 32 for the high-J_c RRP® wires indicate that the transition broadening is similar for A15 reactions between 650° C and 680° C with only a small change in the residual Nb (it decreases from 6.6 to 4.1%). However, a more drastic change is observed at 695° C and 750° C that produce much sharper A15 phase transitions with a larger fraction of high-T_c A15. ΔT_c decreases from 3-3.9 K for the samples annealed at 650–680 but falls even more down to 2.3 K for the 695–750° C annealing.

However the residual Nb in the diffusion barrier falls to 3.7 and 1.6% of residual Nb. This is generally associated with Nb barriers that are too thin to protect the desired high RRR in the stabilizing Cu, a degradation that both affects the low field stability of the magnet and the ability to safely protect magnets during quench.

All of these measurements are designed to explain the boundaries of Nb,Sn in pursuit of a strand that has both high current and low hysteresis loss. The uniform and well-separated 3 to 6 µm diameter Nb,Sn filaments covered in the previous section are being produced in multifilamentary strand on a vast production scale for the ITER project but the quality of the Nb,Sn is much poorer than in HEP strands (as shown in Table 1), resulting in a remarkable 67% loss in J_c (layer). We believe that the secret to whether it is possible lies in understanding the correlations that our combined BNL, ITER and ASC characterizations allow.
Intrinsic Nb₃Sn Optimization

Because any conductor microstructure contains all A15 compositions, it is not possible to extract direct relationships between composition and superconducting properties, so we have been making high homogeneity binary, ternary and quaternary Nb₃Sn bulk samples using powder samples reacted very homogeneously in our 2000°C hot isostatic press. We believe that they have made the highest homogeneity Nb₃Sn that has yet been achieved. In work published in an Applied Physics Letters this year, we showed surprising H_{c2} data on binary samples that exhibit identical upper critical field $H_{c2}(0.3\ K) = 29 \pm 0.2\ T$ with or without undergoing the cubic-to-tetragonal transition, a result in strong contrast to widely used multiple-source data compilations that show a strong depression of $H_{c2}(0\ K)$ from 29 T to 21.4 T in the tetragonal state. As improvements in HEP strand produce more Nb₃Sn that is close to stoichiometry it is important to understand what effects composition variations will have on the optimization of strand performance. Zhou’s PhD work shows that the upper critical field falls well below 10 T for the Sn-poor compositions of the A15 phase.

FIGURE 32. In-field behavior for RRP samples: a., b. and c. At low temperature and in-field the superfluid density is significantly enhanced in the 750°C-annealed sample but almost constant in all the other samples. d. At 16 T there is a close relation between annealing temperature and amplitude of the peak but also the annealing time as some effects (compare red and blue curves).
ITER Wires
Data from Specific Heat

<table>
<thead>
<tr>
<th></th>
<th>Jastec</th>
<th>Hitachi</th>
<th>Kiswire</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_c onset K</td>
<td>17.9</td>
<td>17.9</td>
<td>18.1</td>
</tr>
<tr>
<td>T_c peak K</td>
<td>16.8</td>
<td>17.0</td>
<td>17.0</td>
</tr>
<tr>
<td>ΔT_c, K FWHM of f(T_c) peak</td>
<td>1.7</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>ΔT_c, K 10-90% of 1-F(T_c/Nb-Nb)</td>
<td>4.0</td>
<td>3.5</td>
<td>3.3</td>
</tr>
<tr>
<td>f(T_c peak)</td>
<td>0.40</td>
<td>0.53</td>
<td>0.57</td>
</tr>
<tr>
<td>%Nb</td>
<td>7.2%</td>
<td>13.1%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Volume superfluid at 16T, 2K

40% 34% 45%

OST RRP Samples
Data from Specific Heat

<table>
<thead>
<tr>
<th></th>
<th>2425 RRP-8220-4</th>
<th>2402 RRP-8220-4</th>
<th>2421 RRP-8220-4</th>
<th>2509 RRP-8220-1</th>
<th>2613 RRP-8220-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_c onset K</td>
<td><18.2</td>
<td>18.4</td>
<td>18.4</td>
<td>18.3</td>
<td>18.4</td>
</tr>
<tr>
<td>T_c peak K</td>
<td>17.5</td>
<td>17.7</td>
<td>17.7</td>
<td>17.9</td>
<td>17.9</td>
</tr>
<tr>
<td>ΔT_c, K FWHM of f(T_c) peak</td>
<td>1.5</td>
<td>1.3</td>
<td>1.2</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>ΔT_c, K 10-90% of 1-F(T_c/Nb-Nb)</td>
<td>3.0</td>
<td>3.9</td>
<td>3.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>f(T_c peak)</td>
<td>0.50</td>
<td>0.51</td>
<td>0.61</td>
<td>0.74</td>
<td>0.81</td>
</tr>
<tr>
<td>%Nb</td>
<td>6.6%</td>
<td>4.9%</td>
<td>4.1%</td>
<td>3.7%</td>
<td>1.6%</td>
</tr>
</tbody>
</table>

Volume superfluid at 16T, 2K

40% 37% 42% 40% 54%

OST RRP Samples
BNL Data

<table>
<thead>
<tr>
<th></th>
<th>2425 RRP-8220-4</th>
<th>2402 RRP-8220-4</th>
<th>2421 RRP-8220-4</th>
<th>2509 RRP-8220-1</th>
<th>2613 RRP-8220-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>210°C/48h+400°C/48h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp °C</td>
<td>650</td>
<td>665</td>
<td>680</td>
<td>695</td>
<td>750</td>
</tr>
<tr>
<td>h</td>
<td>96</td>
<td>50</td>
<td>48</td>
<td>48</td>
<td>96</td>
</tr>
<tr>
<td>J_c(12T) A/mm²</td>
<td>3072</td>
<td>2987</td>
<td>3060</td>
<td>3114</td>
<td>2371</td>
</tr>
<tr>
<td>RRR</td>
<td>233</td>
<td>171</td>
<td>109</td>
<td>56</td>
<td>15</td>
</tr>
<tr>
<td>H_k T</td>
<td>23.5</td>
<td>23.8</td>
<td>25.1</td>
<td>26.4</td>
<td>27.3</td>
</tr>
<tr>
<td>T_c K</td>
<td>16.92</td>
<td>16.92</td>
<td>17.10</td>
<td>17.32</td>
<td>17.24</td>
</tr>
<tr>
<td>ΔT_c K</td>
<td>0.85</td>
<td>0.85</td>
<td>1.13</td>
<td>1.00</td>
<td>1.35</td>
</tr>
<tr>
<td>F_{max}/max GN/m³</td>
<td>67.3</td>
<td>64.3</td>
<td>61.0</td>
<td>57.2</td>
<td>40.6</td>
</tr>
<tr>
<td>%Barrier Reacted</td>
<td>38%</td>
<td>41%</td>
<td>34%</td>
<td>35%</td>
<td>68%</td>
</tr>
</tbody>
</table>

TABLE 1. Comparison between Fusion and HEP (Arup Ghosh-BNL) Nb$_3$Sn strands.

REFERENCES

The National Science Foundation charged the National High Magnetic Field Laboratory with developing an internal grants program that utilizes the laboratory’s facilities to carry out high quality research at the forefront of science and engineering and advances the facilities and their scientific and technical capabilities. The User Collaboration Grants Program (UCGP), established in 1996, stimulates magnet and facility development and provides intellectual leadership for research in magnetic materials and phenomena.

The UCGP seeks to achieve these objectives by funding research projects of normally one- to two-year duration in the following categories:

- small, seeded collaborations between internal and/or external investigators that utilize their complementary expertise;
- bold but risky efforts that hold significant potential to extend the range and type of experiments; and
- initial seed support for new faculty and research staff, targeted to magnet laboratory enhancements.

The Program strongly encourages collaboration between NHMFL scientists and external users of NHMFL facilities. Projects are also encouraged to drive new or unique research, i.e., serve as seed money to develop initial data leading to external funding of a larger program. In accord with NSF policies, the Magnet Lab cannot fund clinical studies.

Sixteen (16) UCGP solicitations have now been completed with a total of 474 pre-proposals being submitted for review. Of the 474 proposals, 243 were selected to advance to the second phase of review, and 107 were funded (22.58% of the total number of submitted proposals).

2011 Solicitation and Awards

The NHMFL UCGP has been highly successful as a mechanism for supporting outstanding projects in the various areas of research pursued at the laboratory. Since 2001, the proposal submission and two-stage proposal review process has been handled by means of a web-based system.

Of the 19 pre-proposals received, the committee recommended that 12 pre-proposals be moved to the full proposal state. Of the 12 full proposals, 7 grants were awarded. A breakdown of the review results is presented in Tables 1 and 2.

2012 Solicitation

The 2012 Solicitation Announcement should be released on about May 19, 2012. Awards will be announced by the end of the year.

Results Reporting

To assess the success of the UCGP, reports were requested in February 2012, on grants issued from the solicitations held in the years 2006 through 2010, which had start dates respectively near the beginnings of years 2007 through 2011. At the

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>UCGP Proposal Solicitation Results for 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Area</td>
<td>Pre-Proposals Submitted</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Condensed Matter Science</td>
<td>14</td>
</tr>
<tr>
<td>Biological & Chemical Sciences</td>
<td>3</td>
</tr>
<tr>
<td>Magnet & Magnet Materials Technology</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>19</td>
</tr>
</tbody>
</table>
TABLE 2

UCGP Funded Projects from 2011 Solicitation

<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>NHMFL Institution</th>
<th>Project Title</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas Mareci</td>
<td>UF</td>
<td>Unique MR Probe for in vivo Studies of Rats and Mice in a 17.6 T, 89 mm Vertical Magnet</td>
<td>$195,933</td>
</tr>
<tr>
<td>Naresh Dalal</td>
<td>FSU</td>
<td>A Versatile Variable Temperature Probe for the Ultra Wide Bore 21.2 T (900UWB MHz) Spectrometer for High Resolution NMR of Solids</td>
<td>$199,608</td>
</tr>
<tr>
<td>Clifford Bowers</td>
<td>UF</td>
<td>Optical NMR Probes for High Field Optically Pumped NMR Spectroscopy in Semiconductor Quantum Structures</td>
<td>$199,418</td>
</tr>
<tr>
<td>Jason Cooley</td>
<td>LANL</td>
<td>Magnetic Field Dependence of the Latent Heat, Melting and Freezing Points During Solidification</td>
<td>$200,000</td>
</tr>
<tr>
<td>Marcelo Jaime</td>
<td>LANL</td>
<td>Optical Fiber Bragg Grating-based Magnetostriction in Pulsed Magnets</td>
<td>$190,000</td>
</tr>
<tr>
<td>Vivien Zapf</td>
<td>LANL</td>
<td>Phase Transitions in Quenched Magnetic Fields: Emergence of Topological Defects</td>
<td>$196,000</td>
</tr>
<tr>
<td>Eun Sang Choi</td>
<td>FSU</td>
<td>Development of Low Temperature DC Magnetometry</td>
<td>$159,094</td>
</tr>
</tbody>
</table>

TABLE 3

Facility Enhancements Reported from 2006-2010 UCGP Solicitations

<table>
<thead>
<tr>
<th>Enhancement and available date</th>
<th>Users *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon micromechanical Faraday balance for absolute magnetiztion measurements, 1/06</td>
<td>3</td>
</tr>
<tr>
<td>OPO laser for IR spectroscopy in conjunction with ICR, 1/07</td>
<td>3</td>
</tr>
<tr>
<td>Temperature control of 3He rotator probe for superconductor measurements, 12/06</td>
<td>8</td>
</tr>
<tr>
<td>Time-resolved reflection, photoluminescence and Kerr effect spectroscopy, in 17 T and 31 T magnets, 10/07</td>
<td>6</td>
</tr>
<tr>
<td>Time domain spectroscopy 200 GHz - 1 THz, 5/09</td>
<td>2</td>
</tr>
<tr>
<td>Photoluminescence probe with fiber-free light retrieval, 1/09</td>
<td>1</td>
</tr>
<tr>
<td>AFM cantilever tip as the active element in a dilatometer, 9/09</td>
<td>2</td>
</tr>
<tr>
<td>Thermal conductivity and specific heat measurements for high fields, 1/05</td>
<td>16</td>
</tr>
<tr>
<td>Rotator to perform pulsed critical currents measurements at different temperatures, 4/09</td>
<td>1</td>
</tr>
<tr>
<td>Low temperature HEMT based NMR preamp, for High B/T facility, 5/08</td>
<td>1</td>
</tr>
<tr>
<td>Mössbauer facility, 2/07</td>
<td>2</td>
</tr>
<tr>
<td>Probe and coils for in vivo NMR with 900 MHz and 600 MHz magnets, 1/09</td>
<td>3</td>
</tr>
<tr>
<td>900 MHz high B1 homogeneity dielectric resonator for NMR, 5/09</td>
<td>1</td>
</tr>
<tr>
<td>Triple resonance 600 MHz “low E” probe, 3/10</td>
<td>1</td>
</tr>
<tr>
<td>Double resonance low E magic angle spinning probe for 750 MHz biological solid state NMR, 12/08</td>
<td>2</td>
</tr>
<tr>
<td>High resolution visible spectrometer with LN2-cooled CCD, 7/09</td>
<td>1</td>
</tr>
<tr>
<td>Microscope-based setup for room temperature Raman spectroscopy, 8/09</td>
<td>1</td>
</tr>
</tbody>
</table>

* Number of external users (PI's only) reported to have used the enhancements.
time of the reporting, some of these grants were in progress, and some had been completed. For this "retrospective" reporting, Principal investigators (PIs) were asked to include external grants, NHMFL facilities enhancements, and publications that were generated by the UCGP. Since UCGP grants are intended to seed new research through high risk initial study or facility enhancements, PIs were allowed and encouraged to report results that their UCGP grant had made possible, even if these were obtained after the term of the UCGP grant was complete.

Tables 3 and 4 summarize the results. The success of the program is evident from the wide-ranging enhancements produced and from the production of peer-reviewed publications, many in high impact journals. These include 3 articles in *Nature*, 14 in *Physical Review Letters*, and 4 in the *Journal of the American Chemical Society*. A significant positive impact on education is also evident from the reporting, since almost all grants were reported to have supported one or more students, at least partially or through supplies.

Table 4

Publications Reported 2006-2010 UCGP Solicitations

<table>
<thead>
<tr>
<th>Journal Name</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>App. Phys. Lett.</td>
<td>4</td>
</tr>
<tr>
<td>Applied Supercond.</td>
<td>1</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>1</td>
</tr>
<tr>
<td>Chem. Acta</td>
<td>1</td>
</tr>
<tr>
<td>Chem. Commun.</td>
<td>1</td>
</tr>
<tr>
<td>Chem. Int. Ed.</td>
<td>1</td>
</tr>
<tr>
<td>Chem. Sci.</td>
<td>1</td>
</tr>
<tr>
<td>Euro. Biophys. J.</td>
<td>1</td>
</tr>
<tr>
<td>Inorg. Biochem.</td>
<td>1</td>
</tr>
<tr>
<td>Inorg. Chem.</td>
<td>10</td>
</tr>
<tr>
<td>Inst. of Phys. Conf. Series</td>
<td>6</td>
</tr>
<tr>
<td>Int. J. Mass Spectrom.</td>
<td>2</td>
</tr>
<tr>
<td>J. App. Phys.</td>
<td>4</td>
</tr>
<tr>
<td>J. Cryst. Growth</td>
<td>1</td>
</tr>
<tr>
<td>J. Low Temp. Phys.</td>
<td>4</td>
</tr>
<tr>
<td>J. Membrane Sci.</td>
<td>1</td>
</tr>
<tr>
<td>J. of American Chemical Society</td>
<td>4</td>
</tr>
<tr>
<td>J. of Magnetic Resonance</td>
<td>4</td>
</tr>
<tr>
<td>J. of Physical Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>J. Phys.</td>
<td>2</td>
</tr>
<tr>
<td>J. Phys. Chem. Lett.</td>
<td>2</td>
</tr>
<tr>
<td>J. Phys. Condens. Mat.</td>
<td>5</td>
</tr>
<tr>
<td>Langmuir</td>
<td>1</td>
</tr>
<tr>
<td>Magnetic Reson. Imaging</td>
<td>1</td>
</tr>
<tr>
<td>Magnetic Reson. Med.</td>
<td>1</td>
</tr>
<tr>
<td>Materials Science Forum</td>
<td>1</td>
</tr>
<tr>
<td>Nature</td>
<td>3</td>
</tr>
<tr>
<td>Nature Materials</td>
<td>2</td>
</tr>
<tr>
<td>Nature Struct. Mol. Bio.</td>
<td>1</td>
</tr>
<tr>
<td>Neuro Image</td>
<td>3</td>
</tr>
<tr>
<td>Neurology</td>
<td>1</td>
</tr>
<tr>
<td>Phys. Rev. B</td>
<td>21</td>
</tr>
<tr>
<td>Phys. Rev. Lett.</td>
<td>14</td>
</tr>
<tr>
<td>Physica B</td>
<td>1</td>
</tr>
<tr>
<td>Physica C</td>
<td>2</td>
</tr>
<tr>
<td>Rev. Sci. Instruments</td>
<td>1</td>
</tr>
<tr>
<td>Superconductor Sci. Technology</td>
<td>7</td>
</tr>
<tr>
<td>Ultrafast Phenomena</td>
<td>1</td>
</tr>
</tbody>
</table>

Publications (including accepted for publication) as of December 2011, reported from UCGP grants.
Introduction

The Center for Integrating Research & Learning (CIRL) currently runs up to 20 programs each year. Our mission to expand scientific literacy and to encourage interest in and the pursuit of scientific studies among educators and students of all ages has become more specifically targeted to encourage students to pursue STEM career paths. While this has always been a goal of CIRL programming, increasing the number of students entering the STEM pipeline has become a national imperative and one that is a mandate for informal science education. As such, CIRL has expanded programming to include partnerships that attract more students to the sciences. Jose Sanchez, assistant director, continues to form partnerships with minority serving institutions to ensure a diverse REU program; in addition, he works closely with Magnet Lab scientists to provide meaningful and productive research experiences for undergraduates, teachers, and high school students. Carlos Villa, outreach coordinator, works directly with students, teachers, and the general public to translate the research at the Magnet Lab through classroom outreach, school events, and regular science nights at local venues. Roxanne Hughes, postdoctoral associate, facilitates the popular Science Cafés as well as SciGirls for young women interested in science. In addition, she oversees research and assessment conducted by CIRL.

Magnet Lab scientists who presented at Science Cafés in 2011 were Albert Migliori from Los Alamos, Mike Davidson from FSU, Vincent Salters and Jeff Chanton from Geochemistry at FSU, Art Edison, from the UF site, and Greg Boebinger, director of the Magnet Lab. Dedicated mentorship by Magnet Lab scientists with CIRL programs is essential to CIRL programming. In 2011, 16 scientists mentored REU students, 10 mentored RET participants, 8 mentored high school interns, and 12 scientists worked with middle school students. Graduate students and postdoctoral associates as well play a major part in the success of CIRL programs by participating in after-hours activities, science fair judging, and community events, and by providing role models for elementary, middle, and high school students.

CIRL provides an added benefit to scientists who mentor and participate in the many outreach programs by creating opportunities through which they can meet the educational components and broader impacts criteria when submitting individual investigator grant proposals. The infrastructure currently in place encourages scientists to find a way to get involved that closely matches their research, background, and area of mentoring interest.
Research Experiences for Undergraduates

The REU 2011 class hosted 19 students from 14 different universities, including one student from the University of Puerto Rico Mayaguez (UPRM). 2011 marks the fifth year of the collaboration between the Magnet Lab and Dr. Marcelo Suarez, professor at UPRM’s Department of Engineering and Materials. Seventeen dedicated mentors worked with the 2011 REU program. Art Edison from UF worked closely with returning Claflin student Aaron Shepard on how to better understand the cold tolerance of fruit flies through genetic analysis. This is an example of an ongoing partnership between CIRL, scientists, and the Magnet Lab Diversity Program’s CO-WIN project.

From 2007-2011, CIRL hosted 32 female and 61 male REU participants. Twenty-six publications were reported, 16 directly related to REU research; 41 former participants are pursuing undergraduate degrees, 11 pursuing Masters, and 19 are pursuing Ph.D.s in science and engineering.

Research Experiences for Teachers

The 2011 RET program hosted 15 teachers, including two teachers from Santa Fe, New Mexico, who will serve as a conduit to expanding Magnet Lab outreach to the Los Alamos area. 2011 Marked the first year of a collaboration between the NHMFL, LANL and the Santa Fe Science Initiative. Two RET positions were created for teachers to become engaged in scientific inquiry. The partnership resulted in travel by Jose Sanchez to initiate content-rich professional development and outreach in the Los Alamos area that focuses on materials science.

In the fall of 2011, Roxanne Hughes contacted past RETs from 1999-2011--a total of 146 teachers. Of that number eighty nine have working contact information. As of December 31, 2011, 51 of the 89 have responded to the CIRL survey with the following results: 89% are still teaching; 46% were teaching at Title I schools at the time of RET participation and 40% are still at Title I schools; 36% are elementary teachers; 29% middle school teachers; 36% high school teachers.

The teachers highlighted the increased confidence that the RET program gave them in a number of relevant areas, including: 86% feeling more confident about the science content they were teaching and trying new teaching activities; 84% credited the RET with motivating them to look for professional development and allow their students to explore more science topics; 93% said that the RET improved their understanding of science and increased their interest in science. 78% took on formal or informal leadership roles in their school or science education community.

It is estimated that in 2007-2011, 50 middle and high school teachers influenced a total of 125,000 students over the
5 years; 25 elementary teachers influenced 12,500 students over 5 years. With an increase in confidence reported by RET participants, a significant number of students are being exposed to educators who are excited about science, are more apt to teach science, and who have an understanding of how science research is conducted in real-world situations.

High School Internships

The high school internship program was formalized in 2010 and has become an integral part of CIRL’s programs that benefit, students, scientists, and the Magnet Lab as a whole. In 2011 the high school internship program hosted 10 students from 7 different schools. Eight mentors worked with the students throughout the academic year exposing them to scientific research ranging from ICR to Geochemistry.

Outreach

In 2011, outreach efforts reached 11,442 K12 students, teachers, and members of the general public. CIRL increased its outreach to Title I and underserved schools including rural populations; 52%
of total outreach was to these targeted areas. Partnerships with Thomas University (in Thomasville, Georgia), the Big Bend Area Senior Center, 21st Century Learning Community after school programs, Chick-Fil-A, Barnes & Noble Bookstores, and other local community-based venues provide opportunities for Outreach Coordinator Carlos Villa and Magnet Lab faculty and staff to provide quality experiences for diverse audiences.

During the 2010-2011 school year, over 11,500 students in grades K-12 received outreach by CIRL staff. This is an increase from 9800 students in the previous school year. Over half of the outreach visits to public schools were to Title I schools (52%), also an increase from last year.

All of the teachers who responded to the survey (94) rated their outreach experience as good or better, with 88% of these respondents rating the outreach as excellent. All of the teachers said that they would definitely participate in the program again.

Eighty-seven percent of respondents said that the outreach inspired them to incorporate more hands-on lessons in their teaching; 91% believed that the content was relevant to their instructional needs; 92% said that the materials were developmentally appropriate for their students; and 88% believed that the outreach contributed to their professional growth by expanding their instructional repertoire.

Last year's goal for outreach was to reach more Title I schools and expand outreach audiences. Both of these were achieved. All of the teachers surveyed claimed that they would recommend this program to their colleagues and gave the overall program a rating of good or better.

Middle School Mentorship

In addition to classroom outreach and on-site outreach and tours, middle school mentorship has been a part of CIRL programming for 15 years. In spring 2011, 13 students worked alongside scientists and engineers from the lab, researching the conductivity of foods, the collapse of a bridge, and isolated metallic isotopes.

2011 Research Experiences for Teachers 15 Participants

<table>
<thead>
<tr>
<th>REU Participant</th>
<th>School</th>
<th>Research Area</th>
<th>Mentor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerry Adams</td>
<td>Shaderville Elementary School</td>
<td>Investigation of High Strength Materials for Achieving Higher Magnetic Fields</td>
<td>Yan Xin</td>
</tr>
<tr>
<td>Hakan Armagan</td>
<td>Burke High School</td>
<td>Creating Solid and Hollow Gold Nanoparticles for Use in Laser Spectroscopy</td>
<td>Ken Knappenberger</td>
</tr>
<tr>
<td>Barbara Bamard</td>
<td>Rock Lake Middle School</td>
<td>Cavity Resonant Modes, On-chip and Off-chip Studies</td>
<td>Irinel Chiorescu</td>
</tr>
<tr>
<td>Donna Barton</td>
<td>Cedar Hills Elementary</td>
<td>Ultra High Vacuum and Much Ado About Almost Nothing</td>
<td>Maitri Warusawithana</td>
</tr>
<tr>
<td>Steve Crandall</td>
<td>Inverness Middle School</td>
<td>Ultra High Vacuum and Much Ado About Almost Nothing</td>
<td>Maitri Warusawithana</td>
</tr>
<tr>
<td>Logan Crouch</td>
<td>Wakulla Middle School</td>
<td>Investigation of High Strength Materials for Achieving Higher Magnetic Fields</td>
<td>Yan Xin</td>
</tr>
<tr>
<td>Jianna Dalton</td>
<td>Rock Lake Middle School</td>
<td>Bi-2212: The Current Density Dynamo</td>
<td>Eric Hellstrom</td>
</tr>
<tr>
<td>Joel Falk</td>
<td>Acequia Madre Elementary</td>
<td>Solid State NMR Investigation of Toxic Particles Formed by the Alzheimer’s Amyloid-β Protein</td>
<td>Anant Paravastu</td>
</tr>
<tr>
<td>Lisa Friend</td>
<td>Manatee Academy Middle</td>
<td>Electron Paramagnetic Resonance in a Holmium based Single Molecule Magnet</td>
<td>Chris Beedle</td>
</tr>
<tr>
<td>Carl Kings</td>
<td>Ortiz Academy Middle</td>
<td>Cavity Resonant Modes, On-chip and Off-chip Studies</td>
<td>Irinel Chiorescu</td>
</tr>
<tr>
<td>Matthew Lane</td>
<td>New River Middle School</td>
<td>Creating Solid and Hollow Gold Nanoparticles for Use in Laser Spectroscopy</td>
<td>Ken Knappenberger</td>
</tr>
<tr>
<td>Leonda Narramore</td>
<td>Lake Alfred Middle School</td>
<td>Investigation of Strain Within Niobium Grains</td>
<td>Bob Goddard</td>
</tr>
<tr>
<td>Jacqueline Norris</td>
<td>Lake City Middle School</td>
<td>Investigation of Strain Within Niobium Grains</td>
<td>Bob Goddard</td>
</tr>
<tr>
<td>Michele Van Voorst</td>
<td>Marathon Middle School</td>
<td>Bi-2212: The Current Density Dynamo</td>
<td>Eric Hellstrom</td>
</tr>
<tr>
<td>Robert Wallace</td>
<td>Wakulla High School</td>
<td>Solid State NMR Investigation of Toxic Particles Formed by the Alzheimer’s Amyloid-β Protein</td>
<td>Anant Paravastu</td>
</tr>
</tbody>
</table>
in water samples from their school and communities. In partnership with a local charter school, participants spend one morning each week for a semester with their mentors culminating in a public presentation of their research.

Summer Camps
SciGirls I and II summer camps completed their sixth year in 2011 with 36 middle and high school girls participating in the 2-week experience. SciGirls is a partnership between the Magnet Lab and WFSU, the local public television station, to engage young women in STEM activities with role models. More than 166 young women have gone through the program and exhibit an interest in continuing engagement with both the program and with STEM courses. Creating new partnerships through which CIRL conducts educational activities expands the base for research and assessment and for providing even more opportunities for K12 students and teachers. In 2011, CIRL’s continuing partnership with WFSU provided media coverage for a wide variety of programs including the Magnet Lab’s annual Open House. The original SciGirls grant was provided by public television and WFSU has provided CIRL with many opportunities to introduce hands-on science to young children and their families. The Panhandle Area Educational Consortium (PAEC) has consistently looked to CIRL for educational resources for teacher professional development. In 2011 and 2012, CIRL Assistant Director Jose Sanchez is overseeing the development of activities to translate the complex concepts relative to nanotechnology for high school students and teachers.

CIRL is facilitating educational outreach for the Deep-C Project, which is part of a nine institution consortium funded by BP to study the effects of the Deepwater Horizon oil spill on coastal ecosystems. The Engineering Research Center FREEDM partnership with the FAMU-FSU College of Engineering, the Center for Advanced Power Systems, and North Carolina State University has allowed CIRL to offer a camp for middle school students, as well as paid internships for high school Young Scholars and for teachers to participate in an RET program related to renewable energy.

Thomas University faculty and students have been trained by CIRL educators to better serve K12 students in South Georgia. The partnership has resulted in science outreach to all Thomas County and City of Thomasville K12 students. CIRL will continue its involvement by participating in large outreach events. In addition, Roxanne Hughes assisted Thomas University faculty in establishing partnerships.
a Science Café for the Thomasville, Georgia, area. Events have been well attended with Magnet Lab Director Greg Boebinger giving the first talk that attracted a large and diverse audience.

Research

CIRL’s research agenda is overseen by Post Doctoral Associate Roxanne Hughes, who was primary author on three publications:

In addition to the publications, presentations were made at the American Educational Research Association, the Association for Research in Science Teaching, and the Research on Women and Education conference.

CIRL conducts assessment on all programs as well as longitudinal research on *SciGirls*, REU and RET; comparative educational research is being conducted on all summer camps. Continuing engagement with the broader informal science education community is important to CIRL’s national collaborations.
CHAPTER 7

Industrial Partners & Collaborations

Magnet Lab researchers and staff develop partnerships and collaborations with the private sector, federal agencies, and institutions and international organizations, resulting in a wide variety of magnet-related technologies and advancing other projects that bring technologies closer to the marketplace. Engaging in such research and development activities is part of the National Science Foundation’s charge to the Magnet Lab.

Magnets, Magnet Technologies and Materials for Magnets

Advanced Conductor Technologies, Boulder, CO

The Applied Superconductivity Center and the Magnet Science and Technology division of the Magnet Lab are collaborating with Advanced Conductor Technologies on the development and testing of Coated Conductor Stranded Cable (CCSC), using multi-layer spiraling tapes around a core, for magnet applications. Danko van der Laan, director of the company and associated with NIST/University of Colorado Boulder is developing compact cables based on REBCO coated conductors, a High Temperature Superconductor. The ongoing collaboration resulted in the first measurements ever of HTS cables at low temperature and high magnetic field (4 K and 20 T in Cell 4).

(Magnet Lab contact: Huub Weijers, MS&T)

Advanced Magnet Lab, Inc., Palm Bay, FL

Engineers from the NHMFL are collaborating with Advanced Magnet Lab, Inc. to produce the innovative field-correction shims required to decrease spatial and temporal field disturbances in the Series-Connected Hybrid (SCH). Advanced Magnet Lab has provided the precision fabrication processes required to produce these innovative shims for the first-of-a-kind SCH magnet system that will produce 1 ppm field homogeneity at 36 T.

(Magnet Lab contact: Tom Painter, MS&T)

Criotec Impianti, Chivasso, Italy; ENEA, Rome, Italy

The Magnet Lab has collaborated with Criotec Impianti, an Italian cryogenic systems manufacturing company, and ENEA, an Italian Fusion Energy Research Organization, to jacket the cable-in-conduit superconductor for the outsert coils of the series-connected hybrid magnets. This work includes the welding and inspection of the stainless steel conduit, insertion of the cabled superconductor strands into the conduit, and compaction of the assembled conductor to a rectangular cross-section.

(Magnet Lab contact: Iain Dixon, MS&T)

Danfoss Turbocor Inc., Tallahassee, FL

Danfoss Turbocor Inc. is a company specializing in compressors, particularly the totally oil-free compressors. The compressors are specifically designed for the heating, ventilation, air conditioning and refrigeration (HVACR) industry and need high performance soft and hard magnet materials. The company and the laboratory started a joint research project on selection, characterization and development of permanent magnet materials for high performance and environmental friendly compressors.

(Magnet Lab contact: Ke Han, MS&T)

Faculty of Material Science and Engineering, Kunming University of Science and Technology, China

The collaboration between the Kunming University and the Magnet Lab is related to the magnetic field impact on phase transformation in steels. A professor from Kunming University will come to the Magnet Lab as a visiting scientist for one year to do the research.

(Magnet Lab contact: Ke Han, MS&T)

High Performance Magnetics (HPM), Tallahassee, FL

This start-up company is a spin-off from the Magnet Lab’s Magnet Science & Technology Division and is involved in the US-DOE ITER program. The Cable-in-Conduit-Conductor (CICC) technology used successfully in the NHMFL High Field DC Hy-
brid magnets) is being advanced at HPM with the development of a state-of-the-art CICC jacketing production line. The jacketing process requires advance weld techniques that alter critical mechanical properties of the conduit. HPM has contracted with the Magnet Lab to additionally process the welds and to perform 4 K qualification tests.

(Magnet Lab contact: Bob Walsh, MS&T)

HZB, Berlin, Germany
In March 2007, HZB (formerly the Hahn-Meitner Institute) signed an agreement with Florida State University Magnet Research and Development to develop a Series-Connected Hybrid magnet suitable for neutron scattering experiments and to install it at HZB. The magnet is intended to provide 25 T on-axis using 4.4 megawatts of DC power and have upstream and downstream scattering angles of 30 degrees. Four external design reviews have been held with an international committee of reviewers. Fabrication of the magnet is underway: The superconducting strand has been delivered and cabled and jacketed, the cryostat has been ordered and is well into fabrication, winding of the superconducting coil is about halfway through, and design of the resistive insert coils is underway.

(Magnet Lab contact: Mark D. Bird, MS&T)

Industrial Research Limited, Lower Hutt, New Zealand
The Applied Superconductivity Center and the Magnet Science and Technology division of the Magnet Lab are collaborating with researchers at New Zealand’s Industrial Research Limited on the testing of Roebel-style cables based on REBCO coated conductors, a high temperature superconductor. Testing of a 13-strand cable with transposed 5 mm wide strands is in preparation. Roebel-style cables represent one of three viable concepts for REBCO coated conductor cables suitable for high field magnets.

(Magnet Lab contact: Huub Weijers, MS&T)

Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
The collaboration between the Institute of Metal Research and the Magnet Lab is related to the characterization of stainless steels and other structural materials for high field magnets. The materials are mainly stainless steel 316LN and maraging steels with high mechanical strength.

(Magnet Lab contact: Ke Han, MS&T)

International Thermonuclear Experimental Reactor (ITER), US-ITER Project Office, Oak Ridge, TN
The United States is part of an international collaboration to construct and operate ITER, a full-scale experimental device designed to demonstrate the feasibility of the production of fusion energy. The Magnet Lab’s Magnet Science and Technology division is assisting in the research and development of large superconducting magnets and components for the enormous Fusion Reactor Tokamak. Engineers in MS&T are collaborating on magnet design topics such as stress analysis, component tests, and materials characterization.

(Magnet Lab contact: Bob Walsh, MS&T)

Lawrence Berkeley Laboratory, Accelerator and Fusion Research, Berkeley, CA
The Applied Superconductivity Center and the Magnet Science and Technology division of the Magnet Lab are collaborating with researchers at the Berkeley National Laboratory on the testing of Roebel-style cables based on REBCO coated conductors, a high temperature superconductor. Testing of a 10-strand cable with transposed 2 mm wide strands is in preparation. Roebel-style cables represent one of three viable concepts for REBCO coated conductor cables suitable for high field magnets.

(Magnet Lab contact: Huub Weijers, MS&T)

Scientific Magnetics, Abingdon, England
Scientific Magnetics is a designer and manufacturer of superconducting magnets and cryogenic equipment. The Maglab is collaborating with Scientific Magnetics for the design and manufacturing of the Central Distribution Box of the cryogenic system. The CDB will be used for the cooling of the Series Connected Hybrid and also the 45 T Hybrid magnet.

(Magnet Lab contact: Hongyu Bai, MS&T)

Technique Materials Inc., Lincoln, RI
Technique Materials Inc. is a company specializing in fabrication of materials via glading, plating, and coating. The company and the laboratory have undertaken a joint research project on fabrication of high strength conductors for next generation magnets. Because of the high efficiency of the fabrication approach, nanostructured conductors can be fabricated in a reasonable time.

(Magnet Lab contact: Ke Han, MS&T)

University of Science and Technology Beijing, Department of Materials Science and Engineering, Beijing, China
The collaboration between the University of Science and Technology Beijing and the Magnet Lab is related to the thermodynamic calculations of the multi-elements and multiphase systems. Currently, efforts are focused on understanding interstitial elements impact on the precipitation in steels for high field magnets.

(Magnet Lab contact: Ke Han, MS&T)

Ion Cyclotron Resonance

Falk Center for Molecular Therapeutics, Northwestern University, Evanston, IL
Joseph R. Moskal and Roger A. Kroes are collaborating with the FT-ICR group on the inhibition of invasion of glioblastoma brain tumors through gene therapy. Drs. Moskal and Kroes bring their unique glyco-gene array technology and expertise in the field of glycomics to the collaboration, which permits a systems biology approach (proteomics, lipidomics, glycomics, transcriptomics and phenotypic response) to the search for therapeutic targets for treatment of glioblastoma brain tumors.

(Magnet Lab contact: Alan Marshall, ICR)
General Electric Global Research, Niskayuna, NY

In the continuing effort to explore the utility of heavy oils, the FT-ICR MS facility has joined a collaborative research project with GE to provide a detailed inventory of heavy petroleum species. Of specific interest are metal-containing species (porphyrins) that are corrosive upon combustion. The project resulted in the first direct determination of metal (Ni and V) porphyrin species in unfractoned heavy crude oil. (Magnet Lab contact: Ryan Rodgers, ICR)

M.D. Anderson Cancer Center, Houston, TX

This collaboration with Charles A. Conrad, M.D., associate professor of neurooncology and medical director of the Anne C. Brooks Neuro Center, involves the study of a protein (galecin-1) as a therapeutic target in the progression of glioblastoma multiforme brain tumors. The galecin target was discovered in previous collaborations between Conrad, Carol L. Nilsson (then of Goteborg University), and Mark R. Emmett of the FT-ICR program. The initial collaboration was primarily funded by a Swedish STINT grant. Recently, Mike Davidson, director of the Magnet Lab's Optical Microscopy group, joined the collaboration to provide high-resolution fluorescent photomicroscopy of the live glioblastoma cell lines. (Magnet Lab contacts: Alan Marshall, ICR, and Mike Davidson, Optical Microscopy)

Nalco, Sugarland, TX

Deposits formed in petroleum production equipment pose major obstacles to safe, economical production of heavy oils in both terrestrial and deep offshore production environments. With the help of Nalco, the FT-ICR group has provided detailed compositional analysis for emerging production deposits for new and late production oil reserves all over the globe. The compositional information is vital to the design of the next generation of chemical dispersants and inhibitors to reduce deposition in the transport of heavy petroleum reserves. Another concern is that many species in oil that are soluble under reservoir conditions (high temperature and pressure) become unstable when oil production starts. Their precipitation poses significant problems. The FT-ICR facility has begun the compositional analysis of pressure-induced and temperature-induced precipitants from live oil samples in collaboration with Chevron. The results show that specific classes (chemical functionality) preferably precipitate when either the temperature or pressure is dropped from reservoir conditions. (Magnet Lab contact: Ryan Rodgers, ICR)

Penn State University, University Park, PA

In collaboration with Jonathan Matthews at Penn State University, ICR scientists recently provided detailed compositional analysis of pyridine soluble coal species to aide in the construction of a detailed model of coal behavior. The Penn State model contains tens of thousands of individual molecules and is the most detailed model constructed to date. The FT-ICR MS data was used to validate the model through comparison with compositional data afforded by the FT-ICR Mass Spectrometers in the NSF-funded High Field FT-ICR MS facility. (Magnet Lab contact: Ryan Rodgers, ICR)

Pfizer, Andover, MA

This collaboration is with Jason C. Rouse, who directs mass spectrometry research and development at Pfizer Andover. Current research focuses on identifying and locating the sites of post-translational chemical modifications of antibodies by top-down proteomics (i.e., direct analysis of intact gas-phase antibody molecules). (Magnet Lab contact: Alan Marshall, ICR)

Scripps Research Institute

Current collaborations include principal investigators at Scripps La Jolla (Paul Schimmel, Xiang-Lei Yang) and Scripps Florida (Ming Guo). The common thread is structural characterization of transfer RNA synthetases functioning in roles other than protein synthesis. Those functions result from complexation of a given synthetase with one or more other proteins. Synthetase mutations lead to various diseases. Scripps provides the mutants, and we use hydrogen/deuterium exchange monitored by FT-ICR mass spectrometry to map the protein:protein contact surfaces in the complexes to establish structure:function relationships. (Magnet Lab contact: Alan Marshall, ICR)

Sierra Analytics, Modesto, CA

The lab’s ICR research team maintains a licensing agreement with Sierra, a company that provides mass spectrometry software to petroleum companies. The software contains high level algorithms for identification of thousands of compounds in petroleum mass spectra, obtained through the lab’s pioneering Fourier transform ICR technique development. Lab researchers and Sierra Analytics continue to share updated information, enabling both to stay atop the petroleomics field. (Magnet Lab contact: Chris Hendrickson, ICR)

Woods Hole Oceanographic Institute

As part of FSU’s Gulf Research Initiative Consortium, the Magnet Lab collaborates with Christopher Reddy and Robert Nelson at WHOI in characterization of petroleum oil spills at the molecular level, by gas chromatography/gas chromatography and FT-ICR mass analysis. Characterization of the 2010 Macondo wellhead oil has been completed, and current research focuses on subsequent physical, chemical, and biological changes as the spill propagates into the environment. (Magnet Lab contact: Ryan Rodgers, ICR)

Nuclear Magnetic Resonance

Agilent Technologies, Life Sciences/Chemical Analysis Division, Santa Clara, CA

Investigators from Magnet Lab facilities at UF and FSU collaborate with technical staff at Agilent on an NIH-funded project to develop improved superconductive cryogenic probes for solution NMR. (Magnet Lab contacts: William Brey, NMR and Art Edison, AMRIS)
CHAPTER 7: INDUSTRIAL PARTNERS & COLLABORATIONS

Bruker Biospin Corp., Billerica, MA

The Magnet Lab’s NMR instrumentation program and Bruker Biospin collaborate on the development of Low-E probes for solid-state NMR in heat sensitive biological samples, such as proteins. Bruker Biospin manufactures a line of Efree probes based on the Low-E design developed at our lab. (Magnet Lab contact: Peter Gor’kov, NMR)

Revolution NMR, Fort Collins, CO

The Magnet Lab’s NMR instrumentation program and Revolution NMR collaborate on the development of stators for magic angle spinning NMR and on sample chambers for static solid-state NMR. (Magnet Lab contact: Peter Gor’kov, NMR)

Université des Sciences et Technologies de Lille, Lille, France

The Magnet Lab accepted a contract to develop a Low-E RF probe for solid-state NMR of aligned proteins. The instrument will be used by the research group of Professor Jean-Paul Amoureux. (Magnet Lab contact: Peter Gor’kov, NMR)

University of Oxford, Oxford, England

The Magnet Lab completed a contract to develop a Low-E RF probe for solid-state NMR of aligned proteins. The instrument is used by the research group of Professor Anthony Watts. (Magnet Lab contact: Peter Gor’kov, NMR)

Education

Columbia University, Stanford University, University of California Santa Barbara, University of Rhode Island

The Center for Integrating Research & Learning continues its collaboration with other institutions that conduct educational outreach with teachers. Through the Research Experiences for Teachers (RET) Network, the Center maintains a national presence among other laboratories, centers, and universities that conduct RET and other teacher enhancement programs. Current projects include expansion of the current RET Network website to include input from additional sites and an interactive component to share best practices. In addition, the RET Network will be a comprehensive site that compiles lists of RET programs across the country. (Magnet Lab contact: Pat Dixon, Educational Programs)

Leon County Schools, Tallahassee, FL

The Center for Integrating Research & Learning facilitates science workshops and summer institutes for Leon County Schools. With high stakes testing in science now part of school accountability, the Center has responded to the call of teachers and schools to provide quality professional development. The Center currently maintains formal partnerships with two elementary schools, three middle schools, and two high schools. (Magnet Lab contact: Pat Dixon, Educational Programs)

North Carolina State University, Raleigh, NC

In partnership with the Center for Advanced Power Systems and the FAMU-FSU College of Engineering, the Center for Integrating Research & Learning supports ERC FREEDM educational and assessment activities. Working with The Science House and the ERC FREEDM Center at North Carolina State University, CIRL facilitates the pre-college education program through summer camps, Young Scholars high school internship programs, and Research Experiences for Teachers. In addition, one full-time graduate student coordinates assessment at all locations participating in the FREEDM grant. (Magnet Lab Contact: Jose Sanchez, Educational Programs)

Wakulla County Schools, Crawfordville, FL

After-school workshops are conducted by the Center for Integrating Research and Learning staff each month. Located at Riverlink Elementary School in Crawfordville, FL, teachers from the entire district are invited to attend workshops. The school district facilitates workshop registration and coordinates the ongoing partnership. (Magnet Lab contact: Jose Sanchez, Educational Programs)

WFSU-TV, Tallahassee, FL

The Center for Integrating Research & Learning partners with WFSU-TV, the area’s public television station, to administer SciGirls. The program is a 2-week camp for middle and high-school girls with an interest in science. The collaboration between the Magnet Lab and WFSU-TV has resulted in a successful 6-year camp that has engaged the larger community. In addition, WFSU-TV and the Center partner to provide summer physics experiences for students entering high school. (Magnet Lab contact: Jose Sanchez, Educational Programs)

Optical Microscopy

89 North, Burlington, VT

Scientists at the Magnet Lab are working with applications specialists at 89 North to develop light-emitting diode technology for fluorescence microscopy. This collaboration involves testing the power output and usability of new high-power LED technology in the emission region between 490 and 590 nanometers, a spectral region that is central to microscopy investigations. (Magnet Lab contact: Mike Davidson, Optical Microscopy)

Agilent Technologies, Santa Clara, CA

Agilent Technologies is entering the imaging arena with a new “Monolithic” laser combiner featuring acousto-optic-tunable filter (AOTF) control. The Magnet Lab is collaborating with Agilent to prototype the laser system for use in super-resolution imaging. (Magnet Lab contact: Mike Davidson, Optical Microscopy)

Allele Biotech, San Diego, CA

Allele is a manufacturer and distributor of fluorescent protein constructs made by Robert Campbell and Nathan Shaner. The
Magnet Lab is collaborating with Allele to develop fusion vectors of selected fluorescent proteins.
(Magnet Lab contact: Mike Davidson, Optical Microscopy)

Andor-Tech, Belfast, Northern Ireland

Andor-Tech is an imaging specialist involved with development of CCD camera systems designed to produce images at extremely low light levels. The Magnet Lab is collaborating with Andor-Tech to produce interactive tutorials describing electron multiplying CCD (EMCCD) technology and will work with the company to test new camera products in live-cell imaging.
(Magnet Lab contact: Mike Davidson, Optical Microscopy)

B&B Microscopes, Pittsburgh, PA

Scientists in the Optical Microscopy facility at the Magnet Lab are working with B&B engineers to develop new live-cell imaging techniques using the wide array of products offered by the company. Eventually, an educational website is planned.
(Magnet Lab contact: Mike Davidson, Optical Microscopy)

Bioptechs, Butler, PA

The Magnet Lab is involved with Bioptechs of Pennsylvania to develop live-cell imaging techniques using the company’s advanced culture chambers. The collaboration involves time-lapse imaging of living cells over periods of 36-72 hours using techniques such as differential interference contrast, fluorescence, and phase contrast.
(Magnet Lab contact: Mike Davidson, Optical Microscopy)

Chroma, Rockingham, VT

A major supplier of Interference filters for fluorescence microscopy and spectroscopy applications, Chroma is collaborating with the Magnet Lab to build educational tutorials targeted at fluorescence microscopy. Working in conjunction with Nikon, engineers from Chroma and scientists from the Magnet Lab are examining the characteristics of a variety of filter combinations.
(Magnet Lab contact: Mike Davidson, Optical Microscopy)

The Cooke Corp., Romulus, MI

Scientists at the Magnet Lab are working with applications specialists at Cooke to field test the company’s cooled and electron-multiplied scientific CCD camera systems. Demanding applications in quantitative image analysis and high-resolution images are being explored, as well as time-lapse fluorescence microscopy and resonance energy transfer imaging.
(Magnet Lab contact: Mike Davidson, Optical Microscopy)

CoolLed Ltd., Andover, Hampshire, United Kingdom

Scientists at the Magnet Lab are working with applications specialists at CoolLed to develop light-emitting diode technology for fluorescence microscopy. This collaboration involves testing the power output and usability of new LED technology in the emission region between 490 and 590 nanometers, a spectral region that is central to microscopy investigations.
(Magnet Lab contact: Mike Davidson, Optical Microscopy)

Covance Research Products, Berkeley, CA

Covance is a biopharmaceutical company involved with research and diagnostic antibody production. Magnet Lab scientists are working with Covance researchers to examine immunofluorescence staining patterns in rat and mouse brain thin and thick sections using a wide spectrum of antibodies.
(Magnet Lab contact: Mike Davidson, Optical Microscopy)

Diagnostic Instruments, Sterling Heights, MI

Scientists at the Magnet Lab are working with applications specialists at Diagnostics to field test the company’s new line of cooled scientific CCD systems. Demanding applications in quantitative image analysis and high-resolution images are being explored, as well as time-lapse fluorescence microscopy and resonance energy transfer imaging.
(Magnet Lab contact: Mike Davidson, Optical Microscopy)

Evrogen, Moscow, Russia

Evrogen is a manufacturer and distributor of fluorescent protein constructs made by Dmitriy Chudakov and Vladislav Verkhusha. The Magnet Lab is collaborating with Evrogen to develop fusion vectors of selected fluorescent proteins.
(Magnet Lab contact: Mike Davidson, Optical Microscopy)

EXFO, Mississauga, Ontario, Canada

The Magnet Lab is collaborating with EXFO to examine the spectra and output power of various illumination sources for microscopy including metal halide lamps, light engines, LEDs, and the LiFi illumination system.
(Magnet Lab contact: Mike Davidson, Optical Microscopy)

Hamamatsu Photonics, Bridgewater, NJ

Scientists at the Magnet Lab are working with applications specialists at Hamamatsu to field test the company’s cooled and electron-multiplied scientific CCD camera systems. Demanding applications in quantitative image analysis and high-resolution images are being explored, as well as time-lapse fluorescence microscopy and resonance energy transfer imaging.
(Magnet Lab contact: Mike Davidson, Optical Microscopy)

Linkam, Surrey, United Kingdom

Scientists at the Magnet Lab collaborate with Linkam engineers to design heating and cooling stages for observation of liquid-crystalline phase transitions in the optical microscope. In addition, microscopists are assisting Linkam in introducing a new heating stage for live-cell imaging in fluorescence microscopy.
(Magnet Lab contact: Mike Davidson, Optical Microscopy)

Lumencor Inc., Beaverton, OR

The Magnet Lab is collaborating with Lumencor to examine the spectra and output power of various illumination sources for microscopy including metal halide lamps, light engines, LEDs, and the LiFi illumination system.
(Magnet Lab contact: Mike Davidson, Optical Microscopy)
CHAPTER 7: INDUSTRIAL PARTNERS & COLLABORATIONS

MBL International, Woburn, MA
Scientists at the Magnet Lab are collaborating with MBL to develop new fluorescent proteins for live-cell imaging applications. These include both optical highlighters and fluorescence resonance energy transfer (FRET) biosensors. (Magnet Lab contact: Mike Davidson, Optical Microscopy)

Media Cybernetics, Silver Spring, MD
Programmers at the Magnet Lab are collaborating with Media Cybernetics to develop imaging software for time-lapse optical microscopy. In addition, the Optical Microscopy group is working to add new interactive tutorials dealing with fundamental aspects of image processing and analysis of data obtained with the microscope. (Magnet Lab contact: Mike Davidson, Optical Microscopy)

Molecular Probes/Invitrogen, Eugene, OR
A major supplier of fluorophores for confocal and wide-field microscopy, Molecular Probes is collaborating with the Magnet Lab to develop educational tutorials on the use of fluorescent probes in optical microscopy. (Magnet Lab contact: Mike Davidson, Optical Microscopy)

Nikon USA, Melville, NY
The Magnet Lab maintains close ties with Nikon on the development of an educational and technical support microscopy website, including the latest innovations in digital-imaging technology. As part of the collaboration, the Magnet Lab is field-testing new Nikon equipment and developing new methods of fluorescence microscopy. (Magnet Lab contact: Mike Davidson, Optical Microscopy)

Olympus America, Melville, NY
The Magnet Lab is developing an education/technical website centered on Olympus products and will be collaborating with the firm on the development of a new tissue culture facility at the Magnet Lab in Tallahassee. This activity will involve biologists at the Magnet Lab and will feature Total Internal Reflection Fluorescence microscopy. (Magnet Lab contact: Mike Davidson, Optical Microscopy)

Olympus Corp., Tokyo, Japan
Investigators at the Magnet Lab have been involved in a collaboration with engineers at Olympus to develop and test new optical microscopy systems for education and research. In addition to pacing the microscope prototypes through basic protocols, the Optical Microscopy group is developing technical support and educational websites as part of the partnership. (Magnet Lab contact: Mike Davidson, Optical Microscopy)

Omega Optical, Brattleboro, VT
The Magnet Lab is involved in a collaboration with Omega to develop interactive tutorials targeted at education in fluorescence filter combinations for optical microscopy. Engineers at Omega work with Magnet Lab microscopists to write review articles about interference filter fabrication and the interrelationships between various filter characteristics and fluorophore excitation and emission. (Magnet Lab contact: Mike Davidson, Optical Microscopy)

Photometrics (Roper Scientific Inc.), Tucson, AZ
The microscopy research team at the Magnet Lab is exploring single molecule fluorescence microscopy using electron-multiplying CCD camera systems developed by Photometrics. In addition, the team is conducting routine fixed-cell imaging with multiple fluorophores to gauge camera performance. (Magnet Lab contact: Mike Davidson, Optical Microscopy)

Prior Scientific Inc., Rockland, MA
Prior is a major manufacturer of illumination sources and filter wheels for fluorescence microscopy. The Magnet Lab team is collaborating with Prior to develop new illumination sources and mechanical stages for all forms of microscopy. (Magnet Lab contact: Mike Davidson, Optical Microscopy)

Qimaging, Burnaby, British Columbia, Canada
High-resolution optical imaging is the focus of the Magnet Lab collaboration with Qimaging, a Canadian corporation that specializes in CCD digital cameras for applications in quantitative image analysis and high-resolution images for publication. Target applications are interactive tutorials and image galleries that will be displayed on the Internet. (Magnet Lab contact: Mike Davidson, Optical Microscopy)

Semrock, Rochester, NY
The Magnet Lab Optical Microscopy group is collaborating with Semrock to develop interactive tutorials targeted at education in fluorescence filter combinations for optical microscopy. Engineers and support personnel at Semrock work with Magnet Lab microscopists to write review articles about interference filter fabrication and the interrelationships between various filter characteristics and fluorophore excitation and emission. In addition, Magnet Lab scientists produce images of living cells with Semrock filter combinations. (Magnet Lab contact: Mike Davidson, Optical Microscopy)

Sutter Instrument, Novato, CA
The Magnet Lab is collaborating with Sutter to examine the spectra and output power of various illumination sources for microscopy including metal halide lamps and the LiFi illumination system. (Magnet Lab contact: Mike Davidson, Optical Microscopy)

Zeiss Micro Imaging, Thornwood, NY
The Optical Microscopy group at the Magnet Lab is negotiating a contract with Zeiss on the development of an educational and technical support microscopy website, including the latest innovations in digital imaging technology. As part of the collaboration, microscopists are field-testing new Zeiss equipment and developing new methods of fluorescence microscopy. (Magnet Lab contact: Mike Davidson, Optical Microscopy)
Chapter 8: Conferences and Workshops

National Science Foundation Large Facilities Workshop
April 19-21, 2011
Tallahassee, Florida – Augustus B. Turnbull III Florida State Conference Center
Event Organizer: Brian Fairhurst

Attended by over 80 participants, the purpose of this annual meeting was to bring together NSF staff and personnel from the NSF-funded large facilities. The workshop provided a strategic forum for discussing best practices, sharing lessons learned, making new contacts, and fostering close interactions between facilities. Themes and topics included: Stewardship, management, and the business of large facilities; user programs: selection and time allocation; challenges for NSF large facilities; role and impact of large facilities in outreach and public education; and miscellaneous topics relevant to large facilities operations. The event was preceded by a Pre-Conference Large Facilities Working Session.

8th North American FT MS Conference
May 1-5, 2011
Key West, Florida – Key West Marriott Beachside Hotel
Event Organizer: Alan Marshall

The 8th Biennial North American FT MS Conference was held May 1-5, 2011 in Key West, Florida. Attended by 79 researchers, the conference began with a welcome mixer in the evening, and ended Wednesday evening with a banquet dinner. The FT MS Conference is held every two years and is the premier meeting of its kind in the field of Fourier Transform Mass Spectrometry and its applications. Presentations ranged from instrumentation to technique development in the biological/biomedical sciences; from pharmaceutical metabolism to proteomics; and environmental analysis and petroleomics, with special emphasis on new developments. Partial support was provided to several graduate students and postdocs who contributed posters.

Magnet Lab User Summer School
May 16-20, 2011
Tallahassee, Florida – Magnet Lab
Event Organizer: Albert Migliori

The third annual weeklong summer school featured tutorials on measurement techniques, practical exercises and plenary talks from experts in the field of condensed matter physics. This year’s Summer School was attended by 25 advanced graduate students, postdoctoral associates and early career investigators looking to gain practical measurement experience.

The next User Summer School will be held May 14-18, 2012.

Above: Students gather inside a Magnet cell to learn about instrumentation from Jan Jaroszynski (left) as part of 2011’s User Summer School program.
July 25-29, 2011
Tallahassee, Florida – Augustus B. Turnbull III Florida State Conference Center
Event Organizer: Lloyd Engel

EP2DS emphasizes the fundamental physics, including transport and optical properties of electronic states in low dimensional systems, which now include graphene, nanotubes and dielectric interfaces. MSS addresses the synthesis, processing and applications of modulated materials, as well as novel systems, the broader range of carbon based, hybrid, modulated organic, spintronic, and biologically based modulated structures. EP2DS/MSS was attended by 385 participants from 28 countries.

New Frontiers in High Field Condensed Matter NMR
October 14-15, 2011
Tallahassee, Florida – Magnet Lab
Event organizer: Arneil Reyes

This workshop was organized in conjunction with NHMFL’s Annual User Committee Meeting. The purpose of this workshop was to bring together experts in the field, users, and prospective users of the Magnet Lab facilities to share views, science, and identify problems and solutions related to performing NMR spectroscopy in high magnetic fields from the point of view of condensed matter systems. In particular, the Magnet Lab is building the new 36/41 T Series Connected Hybrid, which is scheduled to be commissioned in mid-2014. One particular feature of this magnet (compared to the 45 T Hybrid) is its higher homogeneity and power stability suitable for higher resolution (40 mm bore, 1 ppm/10 mmDSV) NMR due to large outsert inductance. Another is its very low power usage, which would allow running experiments over extended periods. The event included a panel discussion with active audience participation on ideas where this magnet can be used to its full potential. The workshop welcomed around 40 participants.

New Frontiers in the Physics of Two Dimensional Electron Systems (ICAM)
November 23-25, 2011
Buenos Aires, Argentina

The Magnet Lab was a partial sponsor of the 2011 ICAM gathering, and the laboratory’s Dragana Popovic and Maitri Warusawithana were invited speakers. This year’s topics included LAO/STO and oxide interfaces: 2DEG, photoemission, electrostatic doping, DMFT approaches, transport, multiferroic films, etc. Other 2DEGs: graphene and MOSFETs. Correlation effects in 2DEGs, Wigner crystallization, spin liquids. Other directions: Memristors and resistive switching, holographic duality and the Quantum Hall Effect, 2D atomic crystals.

ABOVE Attendees of the Electronic Properties of Two Dimensional Electron Systems / Modulated Semiconductor Structures Conference share research posters with other scientists.
The Florida State University, the University of Florida and Los Alamos National Laboratory jointly operate the National High Magnetic Field Laboratory for the National Science Foundation under a cooperative agreement that establishes the laboratory’s goals and objectives. Florida State University is responsible for establishing and maintaining administrative and financial oversight of the lab, and for ensuring that operations are in line with the objectives outlined in the cooperative agreement.

Management

The NHMFL Organizational Chart (Figure 1) shows the detailed interfaces between internal and external organizations.

Gregory Boebinger serves as director and principal investigator of the Magnet Lab. He oversees the seven user facilities, magnet science and technology, the activities of the Applied Superconductivity Center, the associate lab director, health and safety, and public affairs.

Brian Fairhurst serves as associate lab director and he has the primary responsibility for Management and Administration. He oversees budgeting and finance, human resources and facilities.

The Magnet Lab has five co-principal investigators on the NSF grant. They are:

- Tim Cross (FSU), Nuclear Magnetic Resonance facility director
- Arthur Edison (UF), Chem/Bio director
- Alan Marshall (FSU), Ion Cyclotron Resonance facility director
- Charles Mielke (LANL), Pulsed Magnet facility director
- Neil Sullivan (UF), High B/T facility director.

The lab’s scientific direction is overseen by the Science Council, a multidisciplinary group of distinguished faculty from all three sites that serves as a think tank to consider and help guide the lab’s scientific mission. Members are: Albert Migliori (co-chair), Art Edison (co-chair), Gail Fanucci, Zhehong Gan, Lev Gor’kov, Stephen Hill, Jurek Krzystek, David Larbalestier, Dragana Popovic, Ryan Rodgers, Theo Siegrist, Glenn Walter, and Huub Weijers.

Two external committees meet regularly to provide critical advice on important issues. Reflecting the broad range of scientists who conduct research at the lab, the Users Committee provides guidance on the development and use of facilities and services in support of the work of those scientists. The External Advisory Committee, made up of representatives from academia, government and industry,
offers advice on matters critical to the successful management of the laboratory.

Personnel and Staffing
Six hundred thirty-four people worked for or were affiliated with the Magnet Lab at its three sites in 2011. Of that number, senior personnel represent the largest group at 31 percent, followed by graduate students at 23 percent and support staff technical/managerial at 15 percent. The total distribution by NSF classification appears in Figure 2.

Diversity
Since the adoption of the formal diversity plan in 2004, the Magnet Lab has launched activities and efforts to increase the participation of underrepresented groups in science, engineering and mathematics.

The Magnet Lab aspires to become a...
nationally recognized leader in the diversity of its scientific, technical and engineering staff, much the same way it is already recognized for its education and outreach programs. With this goal in mind, the lab in 2011 conducted the following activities:

- It continued its recruiting policies of including at least one member of the Magnet Lab Diversity Committee on each search committee for scientific and technical faculty, and advertised job openings in venues that target women and minorities. There were eight faculty job openings, all at the rank of Assistant Scholar/Scientist. One position was subsequently cancelled and will not be filled. Two positions are in the recruitment process. One of five scientists hired was from an underrepresented group. Additionally, a Visiting Assistant Scholar/Scientist was hired that did not require formal advertising.

- In collaboration with “The Alliance for the Advancement of Florida’s Academic Women in Chemistry and Engineering” (AAFAWCE), an NSF ADVANCE-PAID grant, the Diversity Committee organized a workshop on “Faculty Recruitment for Excellence and Diversity” (FRED) designed to present methods for recruiting to promote excellence and diversity in the workplace. Two training sessions were held in May and the presenter was AAFAWCE-FSU PI Prof. Penny Gilmer. A total of 41 faculty members attended. Starting in 2012, FRED attendance will be required for any scientist to serve on a scientific search committee.

- The Dependent Care Travel Grant Program (DCTGP), which seeks to assist and advance the careers of underrepresented groups including women by providing grants for travel-related expenses for dependents, gave four awards to women, one of whom was a new user scientist.

- Dragan Popović, Director of the Magnet Lab’s Diversity Program, became the co-PI on the FSU part of the AAFAWCE grant, a collaboration of five Florida universities to increase the role of women in STEM fields. She is also co-PI on a recently submitted ADVANCE-IT proposal to the National Science Foundation.

- “Collaborative Research: Advance-IT, Florida!” a collaboration of the same five Florida institutions (FSU, UF, FAMU, USF, FIU) that seeks to institutionalize the initial successes of the original ADVANCE-PAID program.

The lab continued its efforts to develop and cultivate individually crafted early career opportunities for members of underrepresented groups at the undergraduate and above. Such efforts in 2011 included the following:

- A continuation of the successful “College Outreach – Workforce Initiative Program” (CO-WIN), where Magnet Lab scientists, engineers, and members of CIRL regularly travel to publicize NHMFL science and recruit REU students from women’s colleges, historically black and minority-serving colleges and universities. A list of past trips and lectures, which is available at http://www.magnet.fsu.edu/about/howwework/diversity/outreach.aspx, includes trips to the Joint Annual Conference of the National Society of Black Physicists and the National Society of Hispanic Physicists, and to the American Indian Science and Engineering Society conference.

- As an ongoing relationship with Claflin University initiated by a 2009 CO-WIN lecture, Art Edison provided NMR training (lectures, laboratory workshop, and seminar) to Claflin faculty and students on their new 700 MHz spectrometer. A Claflin undergraduate Aaron Shepard worked as a REU student with Edison for the second year. Art Edison had two more minority Claflin students working in his lab for the summer. Claflin will be one of the partners in Edison’s new NIH proposal. As part of another collaboration initiated by a 2007 CO-WIN lecture, Edison was working to establish a medical student summer exchange project with Universidad Peruana Cayetano Heredia (UPCH) in Lima, Peru with the expected start date in summer 2012.

- The Pulsed Field Facility established a summer undergraduate student program on high strength magnet conductors. The program explicitly recruited from multiple Native American student programs at several universities in the New Mexico, Colorado, Arizona, and Utah area. A to-
tal of 4 students were accepted, including one female and one Native American.

- Partial support was provided to four year-round undergraduate researchers: Kristen Collar (FSU), Lauren Riner (TCC), Kellie Borg (FSU), and Ashley Bernheisel (FSU).
- Partial support was provided to three graduate students: Luis Colon Perez (UF), Shermane Benjamin (FSU), and Parastou Foroutan (FSU).
- Matching funds were awarded to three postdoctoral research associates: Rongmei Niu (MS&T); Natanette Craig (ASC), and Ping Lin (DC Field CMS).
- Funds were provided to FAMU researchers to support 30 hours of time on the FSU Chemistry Dept. NMR facility; 5 hours were used in 2011.
- A PREM proposal was submitted to NSF to establish a partnership between the FAMU Physics Department, FAMU-FSU College of Engineering, and the NHMFL. The PIs are Charles Weatherford (FAMU) and Greg Boebinger (FSU).
- Theo Siegrist (NHMFL and College of Engineering) submitted an NSF proposal in collaboration with Montclair State University (MSU) in New Jersey. MSU has a majority female student population and about 30% minorities.

One of the lab’s goals is to aim educational outreach for K-12 and the general public to broad and diverse groups. Educational outreach is primarily accomplished through the formal and informal programs of the MagLab’s Center for Integrating Research and Learning (CIRL), in concert with various efforts by laboratory scientists and staff. In 2011, those efforts included the following:

- CIRL continued outreach activities at Title I and underserved schools. According to assessment of outreach programs, 52% of all school outreach is conducted at Title I schools.
- SciGirls camp hosted 36 young women in a two-week camp.
- The Magnet Lab Physics Camp had 7 out of 16 students registered as minority/underrepresented.
- The Magnet Lab hosted two female high school interns in the summer and one in the fall semester.
- Pulsed Field Facility scientists visited a local high school serving predominantly Native American students and gave a lecture on pulsed magnets. They also conducted a tour of LANL for students from the same school.
- CIRL supported the ERC FREEDM grant by providing opportunities for 16 middle school students from Title I schools, 2 minority teachers from a Title I high school, and 6 Young Scholars from Title I schools.
- 2011 RET program hosted 2 teachers from New Mexico, who teach at schools with a majority of Hispanic and/or Native American elementary students; in addition, 6 teachers taught at Title I schools.
- 2011 REU program had 13 of 19 participants categorized as minority or underrepresented.
- The Magnet Lab continued presentations to general public in local establishments, including Barnes & Noble bookstore, and the popular Science Café.
- The Public Affairs Office handled posters and community outreach to draw in visitors for the annual Open House.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL NSF 5-Year Budget with indirect cost distributed to programs and facilities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Division / Program / User Facility</th>
<th>2008-2012 5-Year NSF Summary</th>
<th>% of Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director’s Office</td>
<td>6,012,871</td>
<td>3.96%</td>
</tr>
<tr>
<td>Associate Director/Management & Administration</td>
<td>11,950,521</td>
<td>7.88%</td>
</tr>
<tr>
<td>DC Field Facility</td>
<td>17,182,127</td>
<td>11.32%</td>
</tr>
<tr>
<td>Magnet Science & Technology</td>
<td>19,812,903</td>
<td>13.06%</td>
</tr>
<tr>
<td>Condensed Matter Science</td>
<td>7,209,844</td>
<td>4.75%</td>
</tr>
<tr>
<td>CIMAR - NMR</td>
<td>4,898,153</td>
<td>3.23%</td>
</tr>
<tr>
<td>CIMAR - ICR</td>
<td>7,320,824</td>
<td>4.83%</td>
</tr>
<tr>
<td>CIMAR - EMR</td>
<td>2,184,060</td>
<td>1.44%</td>
</tr>
<tr>
<td>CIRL & REU</td>
<td>1,695,550</td>
<td>1.12%</td>
</tr>
<tr>
<td>ASC</td>
<td>7,599,416</td>
<td>5.01%</td>
</tr>
<tr>
<td>Electricity & Gases</td>
<td>25,795,385</td>
<td>17.00%</td>
</tr>
<tr>
<td>LANL</td>
<td>28,618,765</td>
<td>18.86%</td>
</tr>
<tr>
<td>UF - High B/T</td>
<td>1,903,359</td>
<td>1.25%</td>
</tr>
<tr>
<td>UF- AMRIS</td>
<td>4,103,177</td>
<td>2.70%</td>
</tr>
<tr>
<td>Diversity</td>
<td>474,617</td>
<td>0.31%</td>
</tr>
<tr>
<td>User Collaboration Grants Program</td>
<td>4,963,428</td>
<td>3.27%</td>
</tr>
<tr>
<td>TOTAL NSF COOPERATIVE AGREEMENT</td>
<td>$151,725,000</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

1 FY 2008 included award of $26,500,000 plus supplement of $1,250,000 for a total award of $27,750,000.
2 FY 2009 included award of $22,525,000 plus August 2010 supplement of $3,975,000 for a total award of $26,500,000. Supplement ARRA funding of $5,000,000 is not included in the financial data reported in this budget section.
3 FY 2010 included award of $26,500,000 plus supplement of $6,500,000 for a total award of $33,000,000.
4 FY 2011 included award of $26,675,000 plus an advance of $5,000,000 received in Sept 2010 for a total award of $31,675,000.
5 The National Science Foundation (National Science Board) approved funding of up to $162,000,000 for 2008-2012.
6 UCGP (User Collaboration Grants Program) for FSU/NHMFL, LANL and UF reported as one line item.
NHMFL/FSU staff attended the Career Fair at a local high school serving mostly minority students encouraging them to pursue an education in one of the STEM programs.

CIRL Assistant Director recruited for REU at Morehouse College resulting in increased applications from that institution. Two spots are allocated for summer 2012.

CIRL facilitated the Undergraduate Recruitment Symposium in collaboration with the Physics Department and Florida Georgia Louis Stokes Alliance for Minority Participation.

NHMFL continues to publicize among staff and user facilities that diversity matters, via labwide meetings, the NHMFL diversity website, and the dissemination of NHMFL and national statistics on diversity. Diversity presentations and discussions are regular agenda items at meetings of the NHMFL Executive Committee, External Advisory Committee, User Committee and NSF Site Visits. The annual meeting of the Diversity Advisory Committee was held in December. Jan Musfeldt served as Chair of the Users Executive Committee. Alexandra Stetson was elected to the ICR User Advisory Committee and will begin her term in 2012. The Diversity Action Plan was updated.

Budget

The National High Magnetic Field Laboratory operates with funding provided by federal, state, institutional, and industry sources. In addition, the Magnet Lab faculty and staff have been very successful in securing individual research funding for specific areas of research from a variety of sources, including federal and private sectors. Although the lab receives funding from numerous sources, the National Science Foundation (NSF) is its primary funding source for operations.

NSF Facilities Budget

The National Science Foundation Division/Directorate approved the National...
High Magnetic Field Laboratory’s facilities renewal award on December 12, 2007 with an effective date of January 1, 2008. Table 1 provides a view of the current 5-Year award.

Table 2 presents the annual NSF budgets for the 5-Year award period. Table 3 summarizes the Magnet Lab’s budget position as of December 31, 2011. The budget balance represents deferred capital and expense items, such as resistive magnets maintenance and upgrade and other miscellaneous equipment purchases.

Matching Commitment

The NSF award includes a matching commitment by the State of Florida through Florida State University that is 10% of the annual award. In addition, the State of Florida also provides institutional funds to the laboratory above the NSF matching requirement. The Magnet Lab utilizes these additional state resources as cost-sharing funds for other funding opportunities, as well as supporting other NSF activities. Table 4 presents the State of Florida matching requirements and contribution provided through FSU.

American Recovery and Reinvestment Act (ARRA) Funding

In 2009, the laboratory received a $5,000,000 ARRA award from the NSF which was used to upgrade systems, magnets and purchase upgrades for imaging and spectroscopy consoles.

ARRA funds were used during 2009, 2010 and 2011 to mitigate prior budget reductions. Cumulative underfunding of the 5-Year NSF award led to the deferment of equipment replacement, preventive maintenance, projects and a reduction in DC magnet operations. The receipt of ARRA funds provided the National High Magnetic Field Laboratory (NHMFL) the ability to reinstate many of the deferred items.

A helium liquefier system has been purchased and installed to replace unreliable equipment that is 18-22 years old. This system will enable the lab to maintain a state-of-the-art facility for users. The Florida State University has provided supplementary funds in the amount of $1.9 million dollars to support this enhancement.

The system components include a liquefier which is being used to recover helium gas via a lab-wide recovery system, purify and liquefy helium for re-use as coolant for superconducting magnets and for use with samples during scientific experiments. The liquefier is now in regular operation.

A Central Helium Distribution Box (CDB), comprising valves, heat exchangers, and helium sub coolers, has been purchased to supply liquid helium for the 45 tesla hybrid magnet system and for the cryogenic shields. This is an interface between the output of the 750 W turbine helium liquefier and the current cooling system of the 45 tesla magnet. The system is also designed for future expansion and the next generation of hybrid magnets. The CDB is scheduled for delivery in 2012.

Vacuum jacketed transfer lines are a necessity for coupling the Central Distribution Box to the 45 tesla hybrid. These transfer lines enable the cost-effective (and environmentally friendly) transfer of liquid helium.

The NHMFL committed $475,270 from other non-federal funding sources to support the purchase of a new Magnet Cooling Pump System. The total cost of the project is $575,270 which includes $350,000 for a pump. ARRA funds in the amount of $100,000 were applied to the purchase of this pump. The magnet

TABLE 3

<table>
<thead>
<tr>
<th>Expense Classification</th>
<th>Budget</th>
<th>Spent and Encumbered</th>
<th>Balance 12/31/2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries and Fringe</td>
<td>8,474,858</td>
<td>8,414,966</td>
<td>59,892</td>
</tr>
<tr>
<td>Subawards</td>
<td>7,805,003</td>
<td>7,392,871</td>
<td>412,132</td>
</tr>
<tr>
<td>Capital Equipment</td>
<td>1,724,876</td>
<td>1,558,432</td>
<td>166,444</td>
</tr>
<tr>
<td>Other Direct Cost</td>
<td>7,485,753</td>
<td>5,595,828</td>
<td>1,889,925</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>25,490,490</td>
<td>22,962,097</td>
<td>2,528,393</td>
</tr>
<tr>
<td>Indirect Cost</td>
<td>6,184,510</td>
<td>5,999,725</td>
<td>184,785</td>
</tr>
<tr>
<td>TOTAL Before Indirect on Encumbrances</td>
<td>31,675,000</td>
<td>28,961,822</td>
<td>2,713,178</td>
</tr>
<tr>
<td>Program Income</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE 4

<table>
<thead>
<tr>
<th></th>
<th>State Matching</th>
<th>State Contribution</th>
<th>Total State Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>State of Florida Recurring Funds Cost-Sharing</td>
<td>3,167,500</td>
<td>5,854,151</td>
<td>9,021,651</td>
</tr>
<tr>
<td>Indirect Costs (52%)</td>
<td>1,647,100</td>
<td>3,044,159</td>
<td>4,691,259</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$4,814,600</td>
<td>$8,898,310</td>
<td>$13,712,910</td>
</tr>
</tbody>
</table>
cooling pump provides increased cooling efficiency and the ability to operate longer magnet "run times" during users’ research projects.

Equipment purchases at the Los Alamos National Laboratory (LANL), via a sub-award, include $639,000 to purchase emergency replacement parts for the 60T and 100T Long Pulse Magnet Systems. Without these replacement parts, any magnet failure will require immediate suspension of the respective Pulsed Magnet User Facility. These magnet projects are 65% complete; however, more than 90% of the components have been purchased.

Also, a cryostat has been purchased, installed and is now operational at LANL — at a cost of $71,013. Low loss cryostats decrease the consumption of liquid helium for magnet systems that are used in the user facility. The improved efficiency is required to offset the increasing costs of liquid helium.

Equipment purchases for the Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) Facility at the University of Florida, via a sub-award, include $200,000 to purchase upgrades for imaging and spectroscopy consoles. Four of the current consoles are over ten years old and nearing the end of their useful lives. Frequent component breakdowns are negatively impacting the NHMFL user operations. However, commercial NMR instrument manufacturers have made great strides in digital technology over the last decade and modernizing the AMRIS consoles yields gains in sensitivity, dynamic range, and pulse sequence programming that further leverages the already impressive performance of our high magnetic fields and radiofrequency coils. These upgrades were necessary to support cutting-edge imaging and in vivo spectroscopy experiments that are required by NHMFL external users.
The laboratory continued its strong record of publishing, giving presentations at conferences, and advising and training students who earn Master degrees and Ph.D.s. Table 1 summarizes these activities, and the listings follow. For additional information, refer to the Magnet Lab’s Web site: www.magnet.fsu.edu (/search/publications/search.aspx), where you can search the publications database and link to many articles online. Grant information, received from Florida State University and the University of Florida’s respective offices of sponsored research, is also presented in this chapter, beginning on page 161.

Of the publications reported by Magnet Lab users and faculty in 2011, 203 (60%) appeared in some of the most prominent science and major disciplinary journals (Table 2).

Table 1

2011 MagLab Activities Summary

<table>
<thead>
<tr>
<th>Activity</th>
<th>Number Reported</th>
<th>Page Number for Listings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publications in Peer-Reviewed Journals</td>
<td>341</td>
<td>128</td>
</tr>
<tr>
<td>Presentations, Posters & Other Publications</td>
<td>337</td>
<td>141</td>
</tr>
<tr>
<td>Books, Book Chapters, Other One-time Publications</td>
<td>8</td>
<td>155</td>
</tr>
<tr>
<td>Internet Disseminations</td>
<td>8</td>
<td>155</td>
</tr>
<tr>
<td>Patents and Other Products</td>
<td>6</td>
<td>156</td>
</tr>
<tr>
<td>Awards</td>
<td>17</td>
<td>156</td>
</tr>
<tr>
<td>Dissertations, Ph.D.</td>
<td>69</td>
<td>157</td>
</tr>
<tr>
<td>Theses, Master</td>
<td>19</td>
<td>160</td>
</tr>
</tbody>
</table>
TABLE 1

2011 Prominent Journal Articles

Journal	Number of Articles
Accounts of Chemical Research	1
Analytical Chemistry	9
Angewandte Chemie International Edition	3
Applied Physics Letters	7
Biochemical and Biophysical Research Communications	1
Biochimica et Biophysica Acta	2
Biophysical Journal	3
Chemistry of Materials	1
Energy & Fuels	3
Environmental Science & Technology	1
IEEE Transactions on Applied Superconductivity	10
Inorganic Chemistry	6
International Journal of Mass Spectrometry	6
Journal of Applied Physics	6
Journal of Biological Chemistry	1
Journal of Biomolecular NMR	1
Journal of Magnetic Resonance	6
Journal of Mass Spectrometry	1
Journal of Medicinal Chemistry	1
Journal of Molecular Biology	1
Journal of Physics-Condensed Matter	6
Journal of Proteome Research	1
Journal of the American Chemical Society	10
Journal of the American Society for Mass Spectrometry	2
Macromolecules	1
Magnetic Resonance in Medicine	1
Nano Letters	3
Nature	2
Nature Chemistry	1
Nature Physics	6
Nature Structural & Molecular Biology	1
Neurolmage	2
Physical Review B	42
Physical Review B Rapid Communications	11
Physical Review Letters	25
Proceedings of the National Academy of Sciences of the United States of America	7
Protein Science	1
Science	1
Superconductor Science and Technology	10
TOTAL	**203**
Peer-Reviewed Publications

This section lists over 340 articles that appeared in print in refereed journals and conference proceedings in 2011. Journal titles appearing in red boldface are regarded by the laboratory as prominent or major disciplinary publications.

Abou Hamad, I.; Novotny, M.A.; Wipf, D.O. and Rikvold, P.A., A New Charging Method for Li-ion Batteries: Dependence of the Charging Time on the Direction of an Additional Oscillating Field, ECS Transactions, 33 (39), 33-37 (2011) [read online]

Abou Hamad, I.; Rikvold, P.A. and Poroseva, S.V., Floridian High-voltage Power-grid Network Partitioning and Cluster Optimization Using Simulated Annealing, Physics Procedia, 15, 2-6 (2011) [read online]

Andraka, B. and Takano, Y., Note: Relaxation heat capacity measurements at low temperatures: dealing with nuclear contribution, Rev. Sci. Instr., 82, 016103 (2011)

Besara, T.; Prashant, J.; Dalal, N.S.; Kuhns, P.L.; Reyes, A.P.; Kroto, H.W. and Cheetham, A.K., Mechanism of the order-disorder phase transition, and glassy behavior in the metal-organic framework [((CH$_{3}$)$_{2}$NH)$_{2}$Zn(HCOO)$_{3}$], P Natl. Acad. Sci. U.S.A., 108 (17), 6828-6832 (2011) [read online]

Beu, S.C.; Hendrickson, C.L. and Marshall, A.G., Excitation of Radial Ion Motion in RF-Only Multipole Ion Guides Immersed in a Strong

Bingol, K. and Bruschweiler, R., Deconvolution of Chemical Mixtures with High Complexity by NMR Consensus Trace Clustering, Anal. Chem., 83 (19), 7412-7417 (2011) [read online]

Bradley, M.M.; Houbova, P.; Miccoli, L.; Costa, V.D. and Lang, P.J., Scan patterns when viewing natural scenes: Emotion, complexity, and repetition, Psychophysiology, 48 (11), 1543-1552 (2011) [read online]

Bruschweiler, R., Whispering Within, Nature Chem, 3, 665-666 (2011) [read online]

Christensen, R.B.; Hirschfeld, P.J. and Andersen, B.M., Two routes to magnetic order by disorder in underdoped cuprates, Phys. Rev. B, 84, 184511 (2011)

Davidson, M.W., Pioneers in Optics: Jean-Bernard-Leon Foucault and Willebrod Snell, Microscopy Today, 19 (1), 44-46 (2011) [read online]

De Angelis, A.A.; Grant, C.V.; Baxter, M.K.; McGavin, J.A.; Opella, S.J. and Cotten, M.L., Molecular Recognition of Antimicrobial Piscidin Described by Oriented Sample NMR Spectroscopy, Biophysical J., 105, 1086-1094 (2011)

Drichko, I.L.; Smirnov, I.Yu.; Suslov, A.V. and Leadley, D.R., Acoustic studies of ac conductivity mechanisms in n-GaAs/AlGaAs as in the integer and fractional quantum Hall effect regime, Phys. Rev. B, 83 (23), 235318 (2011) [read online]

Fauque, Z.Z.; Murphy, T. and Behnia, K., Nernst Response of the Landau Tubes in Graphite across the Quantum Limit, Phys. Rev. Lett., 106, 246405 (2011) [read online]

FitzGerald, D.B.; Gullett, J.M.; Levy, C.E. and Crosson, B.A., Delayed Diagnosis of Intracerebral Foreign Body From the Vietnam War, Military Medicine, 176 (2), 228-231 (2011) [read online]

Neurochemical Research, 36 (1), 443-451 (2011) [read online]

García-Ricard, O.J.; Fu, R. and Hernández-Maldonado, A.J., Thermally Induced Changes in a Porous Coordination Polymer \(\text{[Cu}_x\text{pyrazine-2,3-dicarboxylate]}_x\{4,4'\text{-bipyridine]} \) Studied via in situ X-Ray Diffraction and \(^{13}\text{C} \) Cross-Polarization Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy, J. Phys. Chem. C, 111 (9), 3595-3601 (2011) [read online]

Graf, D.E.; Stillwell, R.L.; Purcell, K.M. and Tozer, S.W., Nonmetallic gasket and miniature plastic turnbuckle diamond anvil cell for pulsed magnetic field studies at cryogenic temperatures, High Pressure Research, 31 (4), 533-543 (2011)

Harrington, M.G.; Chekmenev, E.Y.; Schein, V.D.; Fonteh, A.N. and Arakaki, X., Sodium MRI in a rat migraine model and a NEURON simulation study support a role for sodium in migraine, Cephalalgia, 31 (12), 1254-1265 (2011) [read online]

Hazelbaker, E.; Katihar, A.; Sanders, M.; Menjoge, A. and Vasenkov, S., Structure-Transport Relationship in Organized Soft Matter Systems by Diffusion NMR, Diffusion Fundamentals, 16 (82), 1-10 (2011) [read online]

He, H.; Rodgers, R.P.; Marshall, A.G. and Hsu, C.S., Algae Polar Lactides Characterized by Online Liquid Chromatography Coupled with Hybrid Linear Quadrupole Ion Trap. Fourier Transform ion Cyclotron Resonance Mass Spectrometry, 305 (2-3), 116-119 (2011)
Spectrometry, Energy & Fuels, 25, 4770-4775 (2011) [read online]

He, W.; Somarajan, S.; Koktysh, D.S. and Dickerson, J.H., Superantiferrromagnetic EuTe nanoparticles: room temperature colloidal synthesis, structural characterization, and magnetic properties, Nanoscale, 3, 132 (2011) [read online]

He, W.; Zhang, H.-M.; Chong, Y.E.; Guo, M.; Marshall, A.G. and Yang, X.-L., Disease-Causing Neomorphic Mutations on a Single Protein Promote the Same Localized Persistence in STEM painting the full picture? Are the predictors of women’s, Hughes, R.M., Int. J. of Gender, Science and Technology, 50 (3), 547-570 (2011) [read online]

Hsu, C.S.; Lobodin, V.V.; Rodgers, R.P.; McKenna, A.M. and Marshall, A.G., Compositional Boundaries for Fossil Hydrocarbons, Energy & Fuels, 25, 2174-2178 (2011) [read online]

Hughes, R.M., Are the predictors of women’s persistence in STEM painting the full picture? A series of comparative case studies, Int. J. of Gender, Science and Technology, 3 (3), 547-570 (2011) [read online]

Humayun, M., A Model for Osmium Isotopic Evolution of Metallic Solids at the Core-Mantle Boundary, Geochemistry, Geophysics, Geosystems, 12, Q03007 (2011) [read online]

Imaram, W.; Saylor, B.T.; Centonze, C.P.; Richards, N.G.J. and Angerofer, A., EPR Spin Trapping of Oxalate-Derived Free Radical in the Oxalate Decarboxylase Reaction, Free Radical Biology and Medicine, 50 (8), 1009-1015 (2011) [read online]

Jakes, P.; Erdem, E.; Ozarowski, A.; Van Tol, J.; Buckan, R.; Mikhailova, D.; Ehrenberg, H. and Eichel, R.A., Local coordination of Fe3+, in Li[Co6(μ3-Fe3)3(O2)] as cathode material for lithium ion batteries-multi-frequency EPR and Monte-Carlo Newman-supersposition model analysis, Phys. Chem. Chem. Phys., 13 (20), 9344-9352 (2011)

Jauregu, L.A.; Cao, H.; Wu, W.; Yu, Q. and Chen, Y.P., Electronic properties of grains and grain boundaries in graphene grown by chemical vapor deposition, Solid State Commun., 151, 1100 (2011) [read online]

Ji, Y.; Sullivan, N.S. and Hamida, J., Dynamics of HD Molecules Trapped in Cages of Zeolite, J. Low Temp. Phys., 162, 121-128 (2011) [read online]

Juwono, S.; Abou Hamad, I.; Rikvold, P.A. and Wang, S., Parameter estimation by Density Functional Theory for a lattice-gas model of Br and Cl chemisorption on Ag(100), J. Electrono-
fluctuations in the KFe$_2$Se$_2$ superconductors,

Maiorov, B.; Katase, T.; Baily, S.A.; Hirama, T.; Holesinger, T.G.; Hosono, H. and Civele, L., Liquid vortex phase and strong c-axis pinning in low anisotropy BaCoFe$_2$As$_2$ ncitide films,
Superconductor Science and Technology, **24**, 055007 (2011) [read online]

Maiti, S.; Korshunov, M.; Maier, T.; Hirschfeld, P. and Chubukov, A., Evolution of symmetry and structure of the gap in Fe-based superconductors with doping and interactions,

Maiti, S.; Korshunov, M.; Maier, T.; Hirschfeld, P.J. and Chubukov, A., Evolution of superconductivity in Fe-based systems with doping,

Malagoli, A.; Kametani, F.; Jiang, J.; Trociewitz, U.P.; Hellstrom, E.E. and Larbalestier, D.C., Evidence for long range movement of Bi-2212 within the filament bundle on melting and its significant effect on J,
Superconductor Science and Technology, **24**, 075016(9pp) (2011) [read online]

Mammadov, E.; Bobela D.; Reyes, A.; Mehdiyeva, S. and Taylor, P.C., Magnetic resonance study of arsenic bonding sites in ternarychalcogenide glasses,

Manson, J.L.; Walter, M.L.; Schlueuter, J.A.; Lancaster, T.; Steele, A.J.; Blundell, S.J.; Pratt, F.L.; Singleton, J.; McDonald, R.D.; Lee, C.; Whangbo, M.H. and Plonczak, A., [Cu(HF)$_2$](pyrazine)]$_n$: A Rectangular Antiferromagnetic Lattice with a Spin Exchange Path Made Up of Two Different FHF- Bridges,
Angew. Chem. Int. Ed., **50**, 1573-1576 (2011) [read online]

Meas. Sci. Technol., **22** (2), 025901 (2011) [read online]

Mao, Y.; Tipton, J.D.; Blakney, G.T.; Hendrickson, C.L. and Marshall, A.G., Valence Parity to Distinguish c’ and z(circle) Ions from Electron Capture Dissociation/Electron Transfer Dissociation of Peptides: Effects of Isoomers, Isobars, and Proteolysis Specificity,

Masad, I.S. and Grant, S.C., A retunable surface coil for high field 31P and 1H magnetic resonance evaluations of the living mouse leg,
Physiological Measurement, **32** (8), 1061-1081 (2011)

Mathur, S.; Vohra, R.S.; Germain, S.A.; Forbes, S.; Bryant, N.D.; Vandenbome, K. and Walter, G.A., Changes in Muscle T2 and Tissue Anatomy After Downhill Running in mdx Mice,
Muscle & Nerve, **43** (6), 878-886 (2011)

McGrath, PT.; Xu, Y.F.; Aliion, M.; Garrison, J.L.; Butcher, R.A. and Bargmann, C.I., Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes,
Nature, **477** (7364), 321-U92 (2011)

Behavioural Brain Research, **222** (1), 158-168 (2011) [read online]

McTeague, L.M.; Lang, P.J.; Laplante, M.C. and Bradley, M.M., Aversive Imagery in Panic Disorder: Agoraphobia Severity, Comorbidity, and Defensive Physiology,
Biological Psychiatry, **70** (5), 415-424 (2011)

McTeague, L.M.; Shumen, J.R.; Wiser, M.J.; Lang, P.J. and Keil, A., Social vision: Sustained perceptual enhancement of affective facial cues in social anxiety,
Neuroimage, **54** (2), 1615-1624 (2011) [read online]

Meinzer, M.; Harnish, S.; Conway, T. and Crosson, B., Recent developments in functional and structural imaging of aphasia recovery after stroke,
Aphasiology, **25** (3), 271-290 (2011) [read online]

Mino, Jr., W.K.; Gulyuz, K.; Wang, D.; Stedwell, C.N. and Polfer, N.C., Gas-phase structure and dissociation chemistry of protonated tryptophan elucidated by infrared multiple-photon dissociation spectroscopy,

Mishra, V.; Graser, S. and Hirschfeld, P.J., Transport properties of 3D extended s-wave states in Fe-based superconductors,

Montaser, R.; Paul, V.J. and Luesch, H., Pitipeptolides C-F, antimycobacterial cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula from Guam,
Phytochemistry, **72** (16), 2068-2074 (2011)

Moral, M.E.G.; Tu, C.K.; Imaram, W.; Angerofer, A.; Silverman, D.N. and Richards, N.G.J., Nitric Oxide is a Reversible Inhibitor of Oxalate Decarboxylase,
Chemical Communications, **47** (11), 3111-3113 (2011) [read online]

Morley, G.W.; McCormay, D.R.; Boehme, C. and van Tol, J., Electrically detected Rabi oscillations of phosphorus qubits in silicon,

Mote, K.R.; Gopinath, T.; Traaseth, N.J.; Kitchen, J.; Gor’kov, P.L.; Brey, W.W. and Veglia, G., Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers,
J. Biomol. NMR, **51** (3), 339-346 (2011)

Superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+y}$, Phys. Rev. Lett., 106 (5), 057003 (2011)

Mun, E.D.; Altarawneh, M.M.; Mielke, C.H.; Zapf, V.S.; Hu, R.; Bud’ko, S.L. and Canfield, P.C., Anisotropic Hc2 of K$_{0.8}$Fe$_{1.7}$Se$_2$ determined up to 60 T (Editor’s Suggestion), Phys. Rev. B Rapid Commun., 83 (10), 100514(R) (2011) [read online]

Nelson, J.; Chanton, J.; Coleman, F. and Koenig, C., Patterns of stable carbon isotope turnover in gagg, Mycteroberca microlepis, an economically important marine piscivore determined in gag, Mycteroperca microlepis, an economically important marine piscivore determined, Aquatic Biology, 13, 162 (2011) [read online]

Nishino, M.; Enachescu, C.; Miyashita, S.; Rikvold, P.A.; Boukbeddaden, K. and Varret, F., Macromolecular nuclear phenomena in continuum media with long-range interactions, Scientific Reports (Nature Publishing Group), 1, 162 (2011) [read online]

Oczkowski, A.J.; Lewis, F.G.; Nixon, S.W.; Edmiston, H.L.; Robinson, R.S. and Chanton, J.P., Fresh Water Inflow and Oyster Productivity in Apalachicola Bay, FL (USA), Estuaries and Coas, 34 (5), 993-1005 (2011) [read online]

Ostapenko, T.B.; Zhang, C.; Sprunt, S.N.; Jakli, A. and Gleeson, J.T., Magnetooptical technique for detecting biaxial nematic phase, Phys. Rev. E, 84, 021705 (2011) [read online]

Park, H.; Rogalski, Y.; Rodriguez, A.D.; Zlatar, Z.; Benjamin, M.; Harnish, S.; Bennett, J.; Rosenbek, J.C.; Crosson, B. and Reilly, J., Perceptual cues used by listeners to discriminate fluent from nonfluent narrative discourse, Aphasiology, 25 (9), 998-1015 (2011) [read online]

Park, Y.W., Magnetose resistance of polycyctelene nanofibers, Chemical Society Reviews, 39, 2428 (2011) [read online]

Pishko, G.L.; Astary, G.W.; Mareci, T.H. and Santinoramon, M., Sensitivity Analysis of an Image-Based Solid Tumor Computational Model with Heterogeneous Vasculature and Porosity, Annals of Biomedical Engineering, 39 (9), 2360-2373 (2011) [read online]

Primera-Pedrozo, J.N.; Guerrero-Medina, K.J.; Fu, R. and Hernández-Maldonado, A.J., Sr(II)-UPRM-5 Titanium Silicate Framework Thermally Induced Contraction: In Situ High Temperature XRD and 29Si MAS NMR, Dalton Transactions, 40 (14), 3547-3552 (2011) [read online]

Raicevic, I.; Popovic, D.; Panagopoulos, C. and Sasagawa, T., Non-Gaussian noise in the in-plane transport of lightly doped La$_2$Sr$_{1-x}$Cu$_x$O$_{4-}:$ Evidence for a collective state of charge clusters, Phys. Rev. B, 83, 195133 (2011)

Riggs, S.C.; Vafe, O.; Kemper, J.B.; Betts, J.B.; Migliori, A.; Balakirev, F.F.; Hardy, W.N.; Liang, R.; Bonn, D.A. and Boebinger, G.S., Heat capacity through the magnetic-field-induced resistive transition in an underdoped high-temperature superconductor, Nature Physics, 7, 332 (2011) [read online]

Robinette, S.L.; Bruschiweller, R.; Schroeder, F.C. and Edison, A.S., NMR in Metabolomics and Natural Products Research: Two Sides of the Same Coin, Accounts of Chemical Research, 9, A-J (2011) [read online]

Salinas, R.K.; Bruschiweller-Li, L.; Johnson, E. and Bruschiweller, R., Ca$^{2+}$ Binding Alters the Interdomain Flexibility between the Two Cytoplasmic Calcium-binding Domains in the Na$^\pm$/Ca$^{2+}$ Exchanger, J. Biol. Chem., 286 (37), 32123-32131 (2011) [read online]

Samantaray, R.; Clark, R.J.; Choi, E.S.; Zhou, H.D. and Dalal, N.S., $M_2_{(NH_2)}CrO_4$ (M = Na, K, Rb, Cs): A New Family of Cr$^{2+}$-Based Magnetic Ferroelectrics, J. Am. Chem. Soc., 133 (11), 3792 (2011) [read online]

Scheuerlein, C.; Michiel, M. Di; Scheel, M.; Jiang, J.; Kametani, F.; Malagoli, A.; Hellstrom, E.E. and Larbalestier, D.C., Void and phase evolution during the processing of Bi-2212 superconducting wires monitored by combined fast synchrotron micro-tomography and x-ray diffraction, Superconductor Science and Technology, 24, 115004(10pp) (2011) [read online]

Appl. Phys. Lett. 84, 115105 (2011) [read online]

Tsujii, H.; Rotundu, C.R.; Andraka, B.; Takano, Y.; Kageyama, H. and Ueda, Y., Specific heat of the S=1/2 two-dimensional Shastry-Sutherland antiferromagnet SrCu2(BO3)2 in high magnetic fields, J. Phys. Soc. Japan, 80, 043707 (2011) [read online]

Tung, L.-C.; Cadden-Zimansky, P.; Qi, J.; Jiang, Z. and Smirnov, D., Measurement of graphite tight-binding parameters using high-field magnetoreflectance, Phys. Rev. B, 84 (15), 153405 (2011) [read online]

Vachon, M.A.; Koutroulakis, G.; Mitrović, V.F.; Ookie Ma; Marston, J.B.; Reyes, A.P.; Kuhns, P.; Colden, A. and Tylczynski, Z., The Nature of the Low-Energy Excitations in the Short-Range-Ordered Region of Cs2CuCl4, as Revealed by 133Cs Nuclear Magnetic Resonance, New Journal of Physics, 13 (093029), 1367-2630 (2011) [read online]

Vafeq, O. and Wang, L., Spin-orbit coupling induced enhancement of superconductivity in a two-dimensional repulsive gas of fermions, Phys. Rev. B, 84, 172501 (2011) [read online]

Vafeq, O., Quantum Hall effect in a singly and doubly connected three-dimensional topological insulator, Phys. Rev. B, 84, 245417 (2011) [read online]

described in the Anderson lattice model, Phys. Rev. B, 84, 115105 (2011) [read online]

Tarantini, C. and Gurevich, A., High-field properties of pure and doped MgB2, and Fe-based superconductors, MRS Bulletin, 36, 626 (2011) [read online]

Terletska, H., Vucicevic, J., Tanaskovic, D. and Dobrosavljevic, V., Quantum Critical Transport near the Mott Transition, Phys. Rev. Lett., 107, 026401 (2011) [read online]

Tran, H. and Bonesteel, N.E., Valence Bond Entanglement and Fluctuations in Random Singlet Phases, Phys. Rev. B, 84, 144420 (2011) [read online]

reversible strain effect in Y1.6Gd0.4Ba2Cu3O7-δ coated conductors, Superconductor Science and Technology, 24 (11), 115010 (2011)

von Leupoldt, A.; Chan, P.Y.S.; Brandley, M.M.; Lang, P.J. and Davenport, P.W., The impact of anxiety on the neural processing of respiratory sensations, Psychophysiology, 48 (6), 808-812 (2011) [read online]

von Leupoldt, A.; Vovk, A.; Bradley, M.M.; Lang, P.J. and Davenport, P.W., Habitation in neural processing and subjective perception of respiratory sensations, Psychophysiology, 48 (6), 808-812 (2011) [read online]

Wang, J.; Wang, Z.; Clark, R.J.; Ozarowski, A.; van Tol, J. and Dalal, N.S., A high-frequency EPR characterization of the S = 2 linear tripod of In(III) ions in Cr_5(dpa)_2Cl_2ICH_2Cl_2, Polyhedron, 30, 1-4 (2011) [read online]

Wang, L.; Ye, Y.; Lykourinou, V.; Angerhofer, A.; Ming, L.-J. and Zhao, Y., Metal Complexes of a Multidentate Cyclophosphazene with Imidaz-

Yáñez-Vilar, S.; Mun, E.D.; Zapf, V.S.; Ueland, B.G.; Gardner, J.; Thompson, J.D.; Singleton, J.; Sánchez-Andújar, M.; Mira, J; Biskup, N.; Señaris-Rodríguez, M.A. and Batista, C.D., Multiferroic behavior in the new double-perovskite Lu₂MnCoO₆ (Editor’s Suggestion), Phys. Rev. B, 84, 134427 (2011) [read online]

Zhang, L.; Zhang, Y.; Camacho, J.; Khodas, M. and Zaliznyak, I., The experimental observation of quantum Hall effect of l=3 chiral quasipar-
Articles in trilayer graphene, Nature Physics, 7 (12), 953-957 (2011) [read online]

This section lists invited and contributed talks and papers at conferences; papers in conference proceedings that were not peer-reviewed; and abstracts of presentations at universities and public forums in 2011. More than 330 activities were reported this year.

Zhou, J.; Jo, Y.; Sung, Z.H.; Zhou, H.; Lee, P.J. and Larbalestier, D.C., Evidence that the upper critical field of Nb3Sn is independent of whether it is cubic or tetragonal, Appl. Phys. Lett., 99, 122507 (2011) [read online]

Presentations, Posters & Abstracts

This section lists invited and contributed talks and papers at conferences; papers in conference proceedings that were not peer-reviewed; posters; abstracts; and presentations at universities and public forums in 2011. More than 330 activities were reported this year.

Astary, G.W.; Kantorovich, S.; Carney, PR.; Samitornaranont, M. and Mareci, T.H., Gd-Albumin Relaxivity in the Rat Thalamus In Vivo at 11.1 T, Int. Soc. of Magnetic Resonance in Medicine, Montreal, Quebec, Canada, May (2011)

Balicas, L., Anisotropic Hysteretic Hall Effect and Magnetic Control of Chiral Domains in the Chiral Spin States of Pr2IrO4, (contributed), Novel Phenomena in Frustrated Systems, Santa Fe, NM, May 23-27 (2011)

Balicas, L., Brief overview of the National High Magnetic Field Laboratory, Leon High School, Tallahassee, FL, November (2011)

Balicas, L., Field-induced magneto-chiral domains in the frustrated metallic pyrochlore Pr2Ir2O4, (contributed), SCES 2011, Cambridge, UK, August 29-September 3 (2011)

Balicas, L., High Magnetic Fields as a Probe to Unveil the Physical Properties of the Newly Discovered Fe Oxypnictide Superconductors and Related Compounds (invited), DOE-BES-Experimental Condensed Matter Physics Principal Investigators Meeting, Rockville, MD, August 9-12 (2011)

Balicas, L., Metallic and insulating spin liquids: role of spin-chirality and fermionic-like spin excitations, Penn State University, State College, PA, September 20 (2011)

Balicas, L., Torque magnetometry in single layer oxypnictide single crystals, University of Florida, Department of Physics, Gainesville, FL, March (2011)

CHAPTER 10: SCIENCE & RESEARCH PRODUCTIVITY

Bird, M.D., *CICC Magnet Development at the NHMFL*, 22nd Int. Conf. on Magnet Technology, Marseille, France, September 12-16 (2011)

Bird, M.D., *Development of Magnets for Spectroscopy at the NHMFL*, Invited Lecture, Status and Perspectives on Neutron Research in High Magnetic Fields, Potsdam, Germany, March 31 - April 1 (2011)

Bird, M.D., *Magnet Projects at the NHMFL*, Nijmegen High Magnetic Field Lab, Radboud University, Nijmegen, The Netherlands (2011)

Cormier, A.; Ruiz-Orta, C.; Alamo, R.G. and Paravastu, A., *Solubility and Structural Analysis of Synthetic Designer Self-assembling Protein RADA16-I*, Florida State University, Department of Chemical and Biomedical Engineering, Tallahassee, FL, April (2011)

Crooker, S.A., “Listening” to the spin noise of electrons and holes in InGaAs quantum dots, American Physical Society March Meeting, Dallas, TX, March 20-25 (2011)

Crooker, S.A., “Listening” to the spin noise of electrons and holes in semiconductor quantum structures, Argonne National Laboratory, Argonne, IL, October 26 (2011)

Crooker, S.A., “Listening” to the spin noise of electrons and holes in semiconductor quantum structures, Oregon Center for Optics, University of Oregon, Eugene, OR, November 7 (2011)

Crooker, S.A., “Listening” to the spin noise of electrons and holes in semiconductor quantum structures, 2011 SPIE Optics and Photonics, San Diego, CA, August 20-23 (2011)

Dobrosavljevic, V., Lecture 1: Dynamical mean-field theory of correlated electrons with disorder - exact solution in infinite dimensions, invited lecture at the Asia-Pacific Center for Theoretical Physics, Pohang, Korea, November 8 (2011) [read online]

Dobrosavljevic, V., Lecture 2: What’s missing from the standard DMFT solution - Anderson localization effects, statDMFT and TMT-DMFT formulations, invited lecture at the Asia-Pacific Center for Theoretical Physics, Pohang, Korea, November 10 (2011) [read online]

Dobrosavljevic, V., Lecture 3: Electronic Griffiths Phases and Disordered Quantum Magnetism, invited lecture at the Asia-Pacific Center for Theoretical Physics, Pohang, Korea, November 11 (2011) [read online]

Dobrosavljevic, V., Nearly Frozen Coulomb Liquids, invited talk at the 34th Int. Workshop on Condensed Matter Theories, POSCO International Center, Pohang, Korea, November 11 (2011) [read online]

Dobrosavljevic, V., Quantum Critical Transport Near the Mott Metal-Insulator Transition, APCTP Conf. on Localisation 2011 (invited talk), POSCO Int. Center, POSTECH, Pohang, South Korea, August 5 (2011) [read online]

Dobrosavljevic, V., Quantum Critical Transport Near the Mott Transition, Computational Material Science Network Coordination Meeting (invited talk), APS Satellite March Meeting, Dallas, TX, March 20 (2011) [read online]

Dobrosavljevic, V., Signatures of the Wigner-Mott transition in ultra-clean low density two-dimensional electron gases in zero magnetic field, Condensed Matter Seminar at the National Research Council of Canada, Ottawa, Canada, September 29 (2011) [read online]

Dobrosavljevic, V., Wigner-Mott Quantum Criticality and the Two-Dimensional Metal-Insulator Transition, University of North Carolina, Physics Colloquium, Chapel Hill, NC, October 17 (2011) [read online]
Dorsey, A.T., Dislocation induced supersolidity, Supersolidity 2011, CUNY Graduate Center, New York, NY, June (2011)

Dorsey, A.T., Low Temperature Properties of Solid ‘He: Supersolidity or Quantum Metallurgy?, University of South Florida, February (2011)

Engel, L.W., Invited talk: Microwave spectroscopy of electron solids: fractional quantum Hall effect and controlled disorder, DOE ECMP PI meeting, Rockville, MD, August 8 (2011)

Engel, L.W., Microwave and rf spectroscopy of two-dimensional electron solids (Condensed Matter Seminar), Purdue University, West Lafayette, IN, February 2 (2011)

Fu, R., Can Stray Field Imaging (STRAFI) be a Non-Invasive Diagnosis Tool for in situ Detection of Lithium-Ion Conductive Pathway in a Working Lithium-Ion Rechargeable Battery?, State Key Lab for Physical Chemistry of the Solid Surface, Xiamen University, Xiamen, China, October 22 (2011)

Fu, R., Spin Dynamics of Cross-Polarization Mediated Spin Diffusion in NMR of Aligned Sample, 52nd Experimental Nuclear Magnetic Resonance Conf. (ENC), Asilomar, CA, April 11-15 (2011)

Fu, R., Structural Characterization of Membrane Bound Proteins by Solid-State NMR Spectroscopy, Xiamen University, Department of Chemistry, Xiamen, China, October 26 (2011)

Fu, R.; Wang, X.; Li, C.; Pielak, G.J. and Tian, F., “In situ” Detection of the Transmembrane Domain of APP Binding Protein LR11/SorLA in Native E. Coli Membranes, 52nd Experimental Nuclear Magnetic Resonance Conf. (ENC), Asilomar, CA, April 11-15 (2011)

Gaffney, B.J.; Bradshaw, M.D.; Freed, J. and Borbat, P., Paramagnetic Lipids in a Lipid-metabolizing Enzyme: Differential Mobility and Location, 35th Steenbock Symposium, University of Wisconsin - Madison, Madison, WI, June 26-28 (2011)

Gavrilen, A.V., The current state of the art in comprehensive computer analysis of quench in pool-cooled multi-section superconducting magnets at the NHMFL, CHATS on Applied Superconductivity 2011, CERN, Switzerland, September 12-14 (2011)

Glieson, J.T.; Sprunt, S.N. and Jakli, A., Recent Developments on Bent-Core Nematic Liquid Crystals, Ferroelectric Liquid Crystals 2011, Niagara Falls, Ontario, Canada, September 3 (2011)

Gor'kov, L.P., Phenomena in layered metals that coexist on a short spatial scale, NHMFL, New Frontiers in High Field Condensed Matter NMR, Tallahassee, FL, October 13 (2011) [read online]

 CHAPTER 10: SCIENCE & RESEARCH PRODUCTIVITY

Hsu, C.S., Research Opportunities with Future Fuels Institute, invited talk at China University of Petroleum (East China), Qingdao, Shandong, China, February 23 (2011)

Hsu, C.S., Upstream Research Opportunities at FFI, Chevron Energy Technology Company, Houston, TX, April 26 (2011)

Hsu, C.S.; Lu, J.; Marshall, A.G.; Merrick, M.; Binkley, J. and Mason, M., Comprehensive Two-Dimensional GC (GCxGC) for Quantification of Petroleum Biomarkers, 13th Natl Conf. on Organic Geochemistry, Nanning, Guangxi, China, October 30-November 3 (2011)

Hsu, C.S.; Lu, J.; Marshall, A.G.; Merrick, M.; Binkley, J.; Mason, M.; Liao, Y. and Pan, Y., Comprehensive two dimensional GC (GCxGC) for quantitation of petroleum biomarkers, 13th National Meeting on Organic Geochemistry, China, Nanning, Guangxi, China, October 30-November 3 (2011); Published in Proc. the 13th National Meeting on Organic Geochemistry in China, 13, 780 (2011) [read online]

Hughes, R., The Intersection of Ethnicity and Gender in STEM Undergraduate Experiences: A Case Study., National Association for Research in Science Teaching, Orlando, April (2011)

Hughes, R., What are the Current Influences on Women’s Persistence in STEM fields at the Undergraduate Level, American Educational Research Association, New Orleans, LA, April (2011)

Hughes, R.; Molyneaux, K. and Dixon, P., The Role of Informal Science Programs on Middle School Students’ Perceptions of Science and Engineering, National Association for Research in Science Teaching, Orlando, FL, April (2011)

Jaime, M., High Field Magnetostriction of SrCu2(BO3)2, Novel Phenomena in Frustrated Materials (invited speaker), Santa Fe, NM, May 23-27 (2011)

Jaime, M., Magnetic Textures and Magnetostriction of SrCu2(BO3)2, Solidos 2011 (plenary speaker), Tucuman, Argentina, November 8-11 (2011)

Jean-Francois, F. and Cross, T.A., Understanding the potential interaction of transmembrane
helices from MgtC and MgtR, Biophysical Society Meeting, Baltimore, MD, March (2011)

Kartsovnik, M.V.; Helm, T.; Putzke, C.; Wolff-Fabris, F.; Proust, C.; Lepault, S.; Sheikin, I.; Kiswandhi, A.; Choi, E.-S.; Brooks, J.S. and Erb, A., Magnetic Quantum Oscillations and the Fermi Surface in Nd$_2$CeCu$_2$O$_y$, 7th Int. Conf. on Stripes and High Tc Superconductivity, STRIPES 11, Rome, Italy, October 16 (2011)

Kim, M.-S.; Wu, T.; Engel, L.W. and Sambandamurthy, G., Angle-dependent transport behavior near the magnetic-field tuned superconductor-insulator transition, American Physical Society March Meeting, Dallas, TX, March 21 (2011)

Krstovska, D., Magnetothermopower as a tool for studying electronic properties of layered organic conductors, USC Quantum Information and Condensed Matter Physics Seminars, University of Southern California, Los Angeles, CA, April 15 (2011) [read online]

Krstovska, D., Magnetothermopower as a tool for Studying the Electronic Properties of Layered Organic Conductors, Physics & Astronomy Colloquium, California State University, Long Beach, CA, April 18 (2011) [read online]

Krstovska, D., Magnetothermopower Quantum Oscillations in a Q2D Organic Conductor – theoretical approach (invited talk), International School & Symposium on Multi-functional Molecule-based Materials, Argonne National Laboratory, IL, March 13-18 (2011) [read online]

Krstovska, D., Oscillating magnetothermopower in a Q2D organic conductor, American Physical Society March Meeting 2011, Dallas, TX, March 21-25 (2011) [read online]

Krstovska, D., Unusual Properties of the Superconducting Ferromagnet UCoGe, Physics Seminar (Special Physics Lecture), California State University, Long Beach, CA, April 18 (2011) [read online]

Krzystek, J., Magnetic resonance in high fields, National Cheng Kung University, Tainan, Taiwan, July 27 (2011)

Krzystek, J., Magnetic resonance in high fields, National Taiwan Normal University, Taipei, Taiwan, July 25 (2011)

Krzystek, J., Magnetic resonance in high magnetic fields, Academia Sinica, Taipei, Taiwan, July 28 (2011)

Krzystek, J.; Ozarowski, A. and Telser, J., High spin cobalt(i): high-frequency and -field EPR spectroscopy of the CoX(PPh$_3$)$_2$ where X = Cl, Br, XXIII Int. Conf. on Coordination and Bioinorganic Chemistry, Smolenice, Slovakia, June 5-10 (2011)

Krzystek, J.; Ozarowski, A. and Telser, J., Frequency-domain magnetic resonance spectroscopy of high-spin Fe(II) coordination complexes, 40th Southeastern Magnetic Resonance Conf., Atlanta, GA, November 5-7 (2011)

Mao, Y.; Savory, J.J.; Hendrickson, C.L. and Marshall, A.G., Implementation of Dual Elec-
CHAPTER 10: SCIENCE & RESEARCH PRODUCTIVITY

Markiewicz, W.D., A 32 T Magnet with REBCO Conductor, Low-Temperature-High Field Superconductor Workshop, Providence, RI, November 7-9 (2011)

Marshall, A.G.; Lobodin, V.V.; Rodgers, R.P.; McKenna, A.M. and Hsu, C.S., Molecular Composition Space Boundaries for Fossil Crude Oils, 59th Amer. Soc. Mass Spectrometry Conf. On Mass Spectrometry & Allied Topics, Denver, CO, June 4-9 (2011) [read online]

McCamey, D.R.; Morley, G.W.; van Tol, J. and Boehme, C., Single-shot electrical readout of an ensemble nuclear spin memory in silicon, American Physical Society March Meeting, Dallas, TX, March 21-25 (2011)

Moon, B.H.; Magill, B.A.; Engel, L.W.; Tsui, D.C.; Pfeiffer, L.N. and West, K.W., Pinning mode of 2D electron system with short-range alloy disorder, American Physical Society March Meeting, Dallas, TX, March 21 (2011)

Muniz, J.A.; Elumalai, M.; Masad, I.S.; Brey, W.W.; Gor’kov, P.L. and Grant, S.C., Quadrature RF Coil & Phased Array Operation at 21.1

Ozarowski, A.; Wojciechowski, K. and Jeziarska, J., *High-field EPR Investigation of the Intermolecular Exchange Interactions in Copper Carboxylates*, XXIII Int. Conf. on Coordination and Bioinorganic Chemistry, Smolenice, Slovakia, June 5-10 (2011)

Pramudya, Y.; Terletska, H.; Manousakis, E. and Dobrosavljevic, V., *Pseudogap Phase of Magnetic Charge Density Waves*, American Physical Society March Meeting, Dallas, TX, March 21-25 (2011) [read online]

Rodgers, R.P.; McKenna, A.M.; Savory, J.J.; Kaiser, N.K.; Atonia, E.; Hendrickson, C.L. and
CHAPTER 10: SCIENCE & RESEARCH PRODUCTIVITY

Salters, V., *Stirred or Shaken; How Hete-rogeneous is the Mantle?*, University of South Carolina, Columbia, SC, September 15 (2011)

Smirnov, D., *High field optical magneto-spectroscopy of graphite*, Int. Conf. on Frontier Topics in Nanostructures and Condensed Matter Theory (NCMT-2011), London, Canada, March 9-11 (2011) [read online]

Smirnov, I.Y.; Drichko, I.L.; Suslov, A.V.; Mironov, O.A. and Leadley, D.R., *Ferromagnetic-Paramagnetic Transition in a Tilted Magnetic Field in p-Si//SiGe/Si Quantum Wells*, 26th Int. Conf. on Low Temperature Physics (LT26), Beijing, China, August 10-17 (2011); Published in LT26 Conference Program, 381 (2011) [read online]

tors and Ferromagnets, Gniezno-Poznan, Poland, September 25-30 (2011)

Stevens, D.M. and Hsu, C. S., Optimization of reagents as applied to atmospheric pressure gas chromatography mass spectrometry (APGC/MS) for the analysis of fuels, 241st American Chemical Society National Meeting, Div. of Petroleum Chemistry, Anaheim, CA, March 27-31 (2011) [read online]

Stevens, D.M. and Hsu, C.S., Atmospheric pressure gas chromatography mass spectrometry (APGC/MS) for petroleum and chemical research, Crude Oil and Geology Research Lab Seminar, Rio de Janeiro, Brazil, November 10 (2011)

Stewart, G.R., Specific Heat in Fields to 35 T of Iron Pnictide and Chalcogenide Superconductors - Probing the Unconventional Superconductivity (invited plenary talk), Calorimetry Conf. 2011, Oahau, HI, June 12-17 (2011)

Suslov, A.V., Stand alone experimental setup for measurements of magnetoresistance tensor by dc reversal technique, American Physical Society March Meeting, Dallas, TX, March 21-25 (2011); Published in Bulletin of the American Physical Society, 56 (1) (2011)

Suslov, A.V.; Drichko, I.L.; Smirnov, I.Yu.; Mironov, O.A. and Leadley, D.R., Ferromagnetic-Paramagnetic Transition in p-Si/SiGe in Tilted Magnetic Field, University of Wisconsin-Milwaukee, Department of Physics, Milwaukee, WI, March 29 (2011)

Suslov, A.V.; Khartonov, M.; Yakunin, M.V.; Smirnov, I.Yu.; Dvoretzky, S.A. and Mikhailov N.N., Coincidence of the Landau levels in wide HgTe quantum well, 26th Int. Conf. on Low Temperature Physics (LT26), Beijing, China, August 10-17 (2011); Published in LT26 Conference Program, 383 (2011) [read online]

Tang, J.A. and Fu, R., Stray Field Imaging for Detecting Lithium Ion Conductive Pathway in Lithium-Ion Rechargeable Battery, 14th Int. Beijing Conf. and Exhibition on Instrumental Analysis (BCEIA 2011), Beijing, China, October 13-16 (2011)

Telser, J., Using an undergraduate inorganic chemistry laboratory course as a vehicle for research involving advanced paramagnetic resonance spectroscopy, American Chemical Society 241st National Meeting; Symposium on Undergraduate Research at the Frontiers of Inorganic Chemistry, Anaheim, CA, March 27 (2011)

Teplyakova, S.N.; Humayun, M.; Lorenz, C.A.; Ivanova, M.; Korochantsiev, A.V. and Sadilenko, D.A., Trace element distribution between minerals of nodules, veins and fine-grained metal
particles from some ordinary chondrites, 42nd Lunar and Planetary Science Conf., The Woodlands, TX, March 7-11 (2011)

Terletska, H.; Pramudya, Y.; Pankov, S.; Manousakis, E. and Dobrosavljevic, V., Theoretical perspective on nearly frozen coulomb liquids, American Physical Society March Meeting, Dallas, TX, March 21-25 (2011) [read online]

Terletska, H.; Vucicevic, J.; Tanaskovic, D.; and Dobrosavljevic, V., Quantum Critical Transport near the Mott Metal-insulator Transition, International School & Symposium on Multi-functional Molecule-based Materials (poster), Argonne National Laboratory, IL, March 13-18 (2011) [read online]

Toth, J.; Bird, M.D.; Bole, S. and O’Reilly, J.W., Fabrication and Assembly of the NHMFL 25 T Resistive Split Magnet, 22nd Int. Conf. on Magnet Technology, Marseille, France, September 12-16 (2011)

Urbano, R. R., Field tuned Fe ordered moment in underdoped (Ba1−xKx)Fe2As2, University of Kyoto, Physics Department, Kyoto, Japan, February 21 (2011)

Urbano, R.R., Field dependence and magnetic moment anisotropy in underdoped (Ba1−xKx)Fe2As2, Workshop on High-level Experiments on Actinide Systems in the Framework of the Reimei Research Program (JAEA), Tokai, Japan, February 16-18 (2011)

Vafek, O., d-wave quasiparticles in magnetic field: spectrum and scaling, Workshop on Unconventional Superconductivity, William I. Fine Theoretical Physics Institute and School of Physics and Astronomy, University of Minnesota, St. Paul - Minneapolis, MN, April 22 (2011) [read online]

Vafek, O., Interacting fermions on the honeycomb and its bilayer, Herb Seminar at the University of Wisconsin, Madison, Madison, WI, April (2011) [read online]

Vafek, O., Interacting fermions on the honeycomb bilayer: from weak to strong coupling, American Physical Society March Meeting, Dallas, TX, March (2011)

Vafek, O., Interacting fermions on the honeycomb bilayer: from weak to strong coupling, Tage Erlander's award conference "Frontiers of Condensed Matter Physics", Stockholm, Sweden: Nordic Institute for Theoretical Physics, January (2011) [read online]

Vafek, O., Quantum oscillations and pseudogap in high temperature superconductors, Workshop on A New Century of Superconductivity: Iron Pnictides and Beyond: Aspen Center for Physics, Aspen, CO, July (2011)

van Acken, D.A.; Brandon, A.D. and Peslier, A.H., In Situ Determination of Siderophile Trace Elements in Metals and Sulfides in Enstatite Achondrites, 42nd Lunar and Planetary Science Conf., Houston, TX, March 7-11 (2011)

diffusion fundamentals, 16 (22), 1-2 (2011) [read online]

ic Properties of Linear Triatomic Chain of Cr(II), Florida ACS Annual Meeting and Exposition, Innsbruck, FL, May 12-14 (2011)

Wang, Y., Tibetan uplift, monsoons and environmental change in China, Bryant University, Smithfield, RI, September 29 (2011)

Weijers, H.W., Engineering aspects of the NHMFL 32T user magnet, Brookhaven National Lab, Upton, NY, June 22 (2011) [read online]

Weijers, H.W., HTS magnet technology development and potential non-Hybrid HTS magnet projects, NHMFL External Advisory Committee, Tallahassee, FL, July 12-13 (2011) [read online]

Weijers, H.W., HTS NMR Magnet Program at the NHMFL, NHMFL User Committee Meeting, Tallahassee, FL, October 14 (2011) [read online]

Weijers, H.W., YBCO session discussion points, Low Temperature High Field Superconductor Workshop (LTHFSW), Providence, RI, November 7-9 (2011) [read online]

Weijers, H.W.; Miller, G.E., Noyes, P.D. and Miller, J.R., Nitrogen-cooled 20 kA HTS Magnets for the NHMFL Series Connected Hybrid Field Magnet Technology (MT-22), Marseille, France, September 12-16 (2011) [read online]

Weijers, H.W.; Trociewitz, U.P. and Larbalestier, D.C., Summary of activities, issues and possible solutions, related to coated conductors and coils, Francis Bitter Magnet Lab, Massachusetts Institute of Technology (FBML, MIT), Cambridge, MA, July 27-28 (2011)

Wojciechowska, A.; Daszkiewicz, M.; Trusz-

Zdybek, A. and Ozarowski, A., Crystal Structure, Spectroscopic and Microbiological Studies of Metal Ion Complexes with L-Tyrosine, XXIII Int. Conf. on Coordination and Bioinorganic Chemistry, Smolenice, Slovakia, June 5-10 (2011)

Yakunin, M.V.; Suslov, A.V.; Dvoretzky, S.A. and Mikhailov, N.N., Spin Phenomena and Pseudospin Quantum Hall Ferromagnetism in the HgTe Quantum Well, 15th Int. Conf. on Narrow Gap Systems (NGS15), Blacksburg, VA, August 1-5 (2011); Published in Abstracts on CD (2011)

Yakunin, M.V.; Suslov, A.V.; Podgornyk, S.M.; Dvoretzky, S.A. and Mikhailov, N.N., Transitions into a quantum Hall ferromagnet phase under tilted magnetic fields in the HgTe quantum well, 10th Russian Conf. on the Semiconductor Physics, Nizhny Novgorod, Russia, September 19-23 (2011); Published in Book of abstracts, in Russian, 108 (2011)

Yakunin, M.V.; Suslov, A.V.; Podgornyk, S.M.; Dvoretzky, S.A. and Mikhailov, N.N., Suppression of magnetic level coincidences under

The Magnet Lab 2011 Annual Report 153
Yakunin, M.V.; Suslov, A.V.; Podgornykh, S.M.; Dvoretsky, S.A. and Mikhailov, N.N., Suppression of spin level coincidences under tilted magnetic fields in the HgTe quantum well as a manifestation of transitions into quantum Hall ferromagnetic phase, 19th Int. Symposium “NANOSTRUCTURES: Physics and technology”, Ekaterinburg, Russia, June 20-25 (2011); Published in Book of Proceedings, 42-43 (2011)

Yang, K., Quantum Hall Transitions and Quantum Number Fractionalization in Trapped Cold Atom Systems, Seminar at Fudan University, Shanghai, China, June 20 (2011)

Yang, K., Thermodynamic Probes of Anyons in Quantum Hall and Topological Insulator-Superconductor Hybrid Systems, invited talk given at the KITPC workshop on Topological Insulator and Topological Superconductor, Beijing, China, August 11 (2011)

Zapf, V.S., Bose-Einstein Condensation in quantum magnets, Quantum Lunch, Los Alamos National Laboratory, NM, March (2011)

Zapf, V.S., Multiferroic behavior in metal-organic frameworks, American Chemistry Society, “FAME” (Invited Talk), May (2011)

Zapf, V., Bose-Einstein Condensation in an S = 1 Organic Quantum Magnet, American Physical Society March Meeting (Invited Talk), Dallas, TX, April 18-22 (2011)

Zapf, V., Multiferroic behavior in metal-organic frameworks, ISSMMM (Invited Talk), Argonne, IL, March 14-18 (2011)

Zapf, V.S., Dilatometry and Electric Polarization in High Magnetic Fields, NHMFL Summer School, Tallahassee, FL, May (2011)

Zapf, V.S., The National High Magnetic Field Laboratory Pulsed Field Facility, Los Alamos Summer School, Los Alamos National Laboratory, NM, June (2011)

Zhang, C.; Wang, Y.; Li, Q.; Wang, X.; Deng, T.; Tseng, Z.; Takeuchi, G.; Xie, G. and Xu, Y., Paleoenvironmental reconstruction of the late Cenozoic Qaidam Basin, China, American Geophysical Union, Fall Meeting, San Francisco, CA, December 5-9 (2011)

Zheng, G.Q., Doping evolution of the pseudogap ground state of the superconducting Bi$_2$Sr$_2$La,CuO$_6$: NMR study under high magnetic-fields up to 44 T, Aspen Winter Conf., Aspen, CO, January 27 (2011) [read online]

Zudov, M.A., New microwave photoresistivity effect in high-mobility two-dimensional electron systems, X-th Russian Conf. on Physics of Semiconductors, Nizhnii Novgorod, Russia, September (2011)

Zheng, G.Q., Ground state and its doping evolution of the pseudogap in the cuprate superconductors, Int. Conf. on Quantum Phenomena 1-5 (2011) [read online]

Zheng, G.Q., Ground state and its doping evolution of the superconducting Bi$_2$Sr$_2$La,CuO$_6$: NMR study under high magnetic-fields up to 44 T, Aspen Winter Conf., Aspen, CO, January 27 (2011) [read online]

Zudov, M.A., New microwave photoresistivity effect in high-mobility two-dimensional electron systems, X-th Russian Conf. on Physics of Semiconductors, Nizhnii Novgorod, Russia, September (2011)

Books, Chapters, Reviews & Other One-Time Publications

Internet Disseminations

Hsu, C.S., Future Fuels Institute at Florida State University Recognized as a Waters Center of Innovation, http://online.wsj.com/article/PR-CO-20111115-907421.html, (November 15 2011)

Patents & Other Products

Awards, Honors & Service

Atolia, E. (Eta), One of 40 national Finalists in 2011 Intel Science Talent Search (2011)

Bolotin, K. (Kirill), NSF Career Award (2011)

Dobrosavljevic, V. (Vlad), PAI Award for Excellence in Teaching and Research (2011)

Dorsey, A.T. (Alan), Chair, APS Lars Onsager Prize Selection Committee (2011)

Dorsey, A.T. (Alan), Fellow, SEC Academic Consortium Academic Leadership Development Program (2011)

Froelich, P. (Philip), Fellow, American Association for the Advancement of Science (AAAS) (2011)

Furis, M. (Madalina), NSF Career Award (2011)

Hayes, S.E. (Sophia), Vice-Chair, Gordon Research Conference on Magnetic Resonance (2011)

Hendrickson, C. (Christopher), 2011 FSU Distinguished University Scholar Award (2011)

Jaime, M. (Marcelo), Fellow, American Physical Society (2011)

Paravastu, A.K. (Anant), NSF Faculty Early Career Development Award (CAREER) (2011)

Rodgers, R. (Ryan), ACS Division of Petroleum Chemistry Emerging Researcher Award (2011)

Song, L. (Likai), Full member, Sigma Xi (2011)

Song, L. (Likai), Young/Early Career Investigator Award, the Collaboration for AIDS Vaccine Discovery (2011)

Terletska, H. (Hanna), Dirac-Hellman Award in Theoretical Physics (awarded by FSU Physics Department) (2011)

Yang, K. (Kun), Fellow, American Physical Society (2011)
Ph.D. Dissertations

Sixty-eight (69) Ph.Ds were reported for 2011: 32 were awarded to users / students at FSU, UF, or FAMU; 37 were awarded to users at other academic institutions.

Ph.Ds. (32) awarded to users/students at FSU, UF or FAMU:

Besara, T. (Tiglet), “NMR Near Ferroelectric, Magnetic, and Quantum Phase Transitions”, Florida State University, Dept. Chemistry and Biochemistry; and Dept. of Physics, advisor: Dalal, N.S. (Naresh) (2011)

Kim, Y.H. (Young Hak), “Phase Transitions, Thermodynamics, and Magnetism of the Low-Dimensional Antiferromagnets Cr(diethylenetriamine)(O_2)2•H_2O and (CH_3)CHNH,CuCl_2”, University of Florida, Physics, advisor: Takano, Y. (Yasu) (2011)

Li, J. (Junjie), “Femtosecond Electron Pulse as an Ultrafast Probe”, Florida State University, Physics, advisor: Cao, J. (Jianming) (2011)

Mallick, S., “Neodymium isotopic investigation of heterogeneities in the sub-ridge mantle”, Florida State University, Earth, Ocean and Atmospheric Sciences, advisor: Salters, V. (Vincent) (2011)

Rosenberg, J. (Jens), “Intracellular MRI Contrast Agents for High Magnetic Fields”, Florida State University, Chemical & Biomedical Engineering, advisor: Grant, S.C. (Samuel) (2011) [read online]

neering, advisor: Moudgil, B.M. (Brij) (2011)

Ph.Ds. (37) awarded by other academic institutions to external users/students:

Keith, B. (Brian), “Experimental Studies of Low-Dimensional Heisenberg Antiferromagnets”, Clark University, Physics, advisor: Landee, C. (Christopher) (2011)

Master Theses

Lang, D. (David), “New Materials Grown from Ca/Li Flux”, Florida State University, Chemistry, advisor: Lattimer, S. (Susan) (2011)

Takada, K. (Kohsuke), “Low-temperature physical properties of organic triangular spin systems of TNN · CH3CN and TIM · CH3CN”, Osaka Prefecture University, Graduate School of Science, Department of Physical Science, advisor: Hosokoshi, Y. (Yuko) (2011)

Wolf, M.S. (Michael), “Infrared and Optical Studies of Topological Insulators Bi2Se3, Bi2Te3 and Sb2Te3”, University of Akron, Physics, advisor: Dordevic, S.V. (Sasa) (2011)
Grants Awarded to NHMFL-Affiliated Faculty at Florida State University

As reported by the FSU Office of Sponsored Research for calendar year 2011

Note: Individual investigator grants awarded to faculty is a measure of scientific productivity, similar to publications, presentations, and patents. The information below is presented in this context. Because individual awards are administered differently (by different agencies; under different terms), this information should not be aggregated.

<table>
<thead>
<tr>
<th>PI: Alamo, Rufina G.</th>
<th>Laboratory Renewal Proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant Title: EH Branching Microstructure</td>
<td></td>
</tr>
<tr>
<td>Agency: Exxon Chemical Company</td>
<td></td>
</tr>
<tr>
<td>Project Dates: 10/1/06 - 12/31/13</td>
<td></td>
</tr>
<tr>
<td>Award: $237,025</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI: Alamo, Rufina G.</th>
<th>Grant Title: Kinetic Control of Crystalline Order in Olefin-Based...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency: National Science Foundation</td>
<td></td>
</tr>
<tr>
<td>Project Dates: 6/1/11 - 5/31/15</td>
<td></td>
</tr>
<tr>
<td>Award: $115,000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI: Balicas, Luis Molinuerno</th>
<th>Grant Title: SISGR - High Magnetic Fields as a Probe to Unveil the...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency: U.S. Department of Energy</td>
<td></td>
</tr>
<tr>
<td>Project Dates: 9/15/09 - 9/14/12</td>
<td></td>
</tr>
<tr>
<td>Award: $150,000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI: Balicas, Luis Molinuerno</th>
<th>Grant Title: Atomic Layers of Nitrides, Oxides and Sulfides (ALNOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency: Rice University</td>
<td></td>
</tr>
<tr>
<td>Project Dates: 9/1/11 - 3/31/12</td>
<td></td>
</tr>
<tr>
<td>Award: $44,625</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI: Boebinger, Gregory S.</th>
<th>Grant Title: National High Magnetic Field Laboratory Renewal Proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency: National Science Foundation</td>
<td></td>
</tr>
<tr>
<td>Project Dates: 1/1/08 - 12/31/12</td>
<td></td>
</tr>
<tr>
<td>Award: $13,500,000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI: Boebinger, Gregory S.</th>
<th>Grant Title: National High Magnetic Field Laboratory Renewal Proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency: National Science Foundation</td>
<td></td>
</tr>
<tr>
<td>Project Dates: 1/1/08 - 12/31/12</td>
<td></td>
</tr>
<tr>
<td>Award: $6,000,000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI: Bonesteel, Nicholas E.</th>
<th>Grant Title: Correlated Electrons in Reduced Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency: U.S. Department of Energy</td>
<td></td>
</tr>
<tr>
<td>Project Dates: 6/1/97 - 7/31/12</td>
<td></td>
</tr>
<tr>
<td>Award: $70,000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI: Brey, William W.</th>
<th>Grant Title: Improved NMR Technology for Natural Products and Metabolic...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency: University of Florida</td>
<td></td>
</tr>
<tr>
<td>Project Dates: 8/1/09 - 6/30/12</td>
<td></td>
</tr>
<tr>
<td>Award: $159,710</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI: Brey, William W.</th>
<th>Grant Title: Design and Testing of Coil Set for 5MM Triple Resonance...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency: Agilent Technologies Inc</td>
<td></td>
</tr>
<tr>
<td>Project Dates: 1/3/11 - 1/2/12</td>
<td></td>
</tr>
<tr>
<td>Award: $26,000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI: Brooks, James S.</th>
<th>Grant Title: Electronic, Magnetic, and Spectroscopic Properties of...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI: Chanton, Jeffrey</td>
<td>Grant Title: Impact of Crude Oil on Coastal and Ocean Environments</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Agency: Environmental Research and Education Foundation</td>
<td></td>
</tr>
<tr>
<td>Project Dates: 2/2/11 - 2/1/12</td>
<td></td>
</tr>
<tr>
<td>Award: $30,588</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI: Chanton, Jeffrey</th>
<th>Grant Title: Environmental Controls on the Dynamics of Nursery Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency: University of Florida</td>
<td></td>
</tr>
<tr>
<td>Project Dates: 2/1/10 - 1/31/13</td>
<td></td>
</tr>
<tr>
<td>Award: $86,490</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI: Chanton, Jeffrey</th>
<th>Grant Title: Genes, Isotopes, and Ecosystem Biogeochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency: University of Arizona</td>
<td></td>
</tr>
<tr>
<td>Project Dates: 7/1/10 - 6/30/12</td>
<td></td>
</tr>
<tr>
<td>Award: $98,218</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI: Chanton, Jeffrey</th>
<th>Grant Title: Genes, Isotopes, and Ecosystem Biogeochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency: University of Arizona</td>
<td></td>
</tr>
<tr>
<td>Project Dates: 7/1/10 - 6/30/12</td>
<td></td>
</tr>
<tr>
<td>Award: $98,087</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI: Chanton, Jeffrey</th>
<th>Grant Title: Development and Application of a Tracer Gas Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency: National Institute of General Medicine</td>
<td></td>
</tr>
<tr>
<td>Project Dates: 5/1/09 - 4/30/12</td>
<td></td>
</tr>
<tr>
<td>Award: $253,046</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agency</th>
<th>Mississippi State University</th>
<th>Project Dates: 7/15/10 - 12/31/12</th>
<th>Award: $105,913</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI: Chanton, Jeffrey</td>
<td>Grant Title: Field-Deployable Gas Analyzer for Methane Isotopes</td>
<td>Agency: Los Gatos Research, Inc.</td>
<td>Project Dates: 3/15/11 - 2/14/12</td>
</tr>
<tr>
<td>PI: Cross, Timothy A.</td>
<td>Grant Title: Four Mtb Membrane Proteins: Structure and Function</td>
<td>Agency: National Institute of Allergy</td>
<td>Project Dates: 12/1/07 - 11/30/12</td>
</tr>
<tr>
<td>PI: Cross, Timothy A.</td>
<td>Grant Title: Four Mtb Membrane Proteins: Structure and Function</td>
<td>Agency: National Institute of Allergy</td>
<td>Project Dates: 12/1/07 - 11/30/12</td>
</tr>
<tr>
<td>PI: Cross, Timothy A.</td>
<td>Grant Title: M Tuberculosis Membrane Protein Pharmaceutical Targets</td>
<td>Agency: National Institute of Allergy</td>
<td>Project Dates: 8/20/09 - 7/31/12</td>
</tr>
<tr>
<td>PI: Cross, Timothy A.</td>
<td>Grant Title: M Tuberculosis Membrane Protein Pharmaceutical Targets</td>
<td>Agency: National Institute of Allergy</td>
<td>Project Dates: 8/20/09 - 7/31/12</td>
</tr>
<tr>
<td>PI: Cross, Timothy A.</td>
<td>Grant Title: Correlations: Structure-Dynamics-Function in Channels</td>
<td>Agency: National Institute of Allergy</td>
<td>Project Dates: 8/1/11 - 7/31/12</td>
</tr>
<tr>
<td>PI: Davidson, Michael W.</td>
<td>Grant Title: Construction of Interactive Tutorials</td>
<td>Agency: Various DNPO</td>
<td>Project Dates: 4/1/00 - 12/31/15</td>
</tr>
<tr>
<td>PI: Dixon, Patricia</td>
<td>Grant Title: QuarkNet</td>
<td>Agency: University of Notre Dame</td>
<td></td>
</tr>
<tr>
<td>PI: Dobrosavljevic, Vladimir</td>
<td>Grant Title: Complex Behavior Near the Metal-Insulator Transition</td>
<td>Agency: National Science Foundation</td>
<td>Project Dates: 9/15/10 - 8/31/13</td>
</tr>
<tr>
<td>PI: Engel, Lloyd W.</td>
<td>Grant Title: Microwave/Rf Spectroscopy of 2D Solids/Stripes</td>
<td>Agency: U.S. Department of Energy</td>
<td>Project Dates: 7/1/05 - 6/30/12</td>
</tr>
<tr>
<td>PI: Fairhurst, Brian P</td>
<td>Grant Title: 2011 Large Facilities Workshop</td>
<td>Agency: National Science Foundation</td>
<td>Project Dates: 6/15/11 - 11/30/11</td>
</tr>
<tr>
<td>PI: Gaffney, Betty</td>
<td>Grant Title: Reactive Intermediates in Lipoxygenase Pathways</td>
<td>Agency: National Institute of General</td>
<td>Project Dates: 1/1/09 - 12/31/12</td>
</tr>
<tr>
<td>PI: Hellstrom, Eric E.</td>
<td>Grant Title: Investigation of Phase Relations and Reaction Pathways</td>
<td>Agency: National Science Foundation</td>
<td>Project Dates: 7/1/10 - 6/30/13</td>
</tr>
<tr>
<td>PI: Hill, Stephen O.</td>
<td>Grant Title: International Collaboration in Chemistry: EPR Characteri...</td>
<td>Agency: National Science Foundation</td>
<td>Project Dates: 9/1/09 - 8/31/12</td>
</tr>
<tr>
<td>PI: Hill, Stephen O.</td>
<td>Grant Title: Applications of Terahertz-to-Infrared Probes in Molecular...</td>
<td>Agency: National Science Foundation</td>
<td>Project Dates: 5/15/11 - 4/30/12</td>
</tr>
<tr>
<td>PI: Hsu, Chang S.</td>
<td>Grant Title: Future Fuels Institute Membership Agreement</td>
<td>Agency: Various DNPO</td>
<td>Project Dates: 7/1/11 - 6/30/15</td>
</tr>
<tr>
<td>PI: Hsu, Chang S.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI: Humayun, Munir</td>
<td>Grant Title: Elemental Abundances in the Solar Wind</td>
<td>Agency: Various DNPO</td>
<td></td>
</tr>
<tr>
<td>PI: Humayun, Munir</td>
<td>Grant Title: Elemental Abundances in the Solar Wind</td>
<td>Agency: National Aeronautics & Space A</td>
<td>Project Dates: 2/15/09 - 2/14/13</td>
</tr>
<tr>
<td>PI: Humayun, Munir</td>
<td>Grant Title: Elemental Abundances in the Solar Wind</td>
<td>Agency: National Aeronautics & Space A</td>
<td>Project Dates: 2/15/09 - 2/14/13</td>
</tr>
<tr>
<td>PI: Humayun, Munir</td>
<td>Grant Title: Siderophile Element Constraints on Solar System Process</td>
<td>Agency: NASA</td>
<td>Project Dates: 8/1/10 - 7/31/13</td>
</tr>
<tr>
<td>PI: Kim, Jeong-Su</td>
<td>Grant Title: Skeletal Muscle Research</td>
<td>Agency: SAEKWANG FRP Inc</td>
<td>Project Dates: 4/1/11 - 3/31/13</td>
</tr>
<tr>
<td>PI: Knappenberger, J.R.; Kenneth L.</td>
<td>Grant Title: Magnetoplasmonic Nanomaterials: A Route to Predictive...</td>
<td>Agency: Air Force Office of Scientific Research</td>
<td>Project Dates: 6/15/10 - 6/14/13</td>
</tr>
<tr>
<td>PI: Knappenberger, J.R.; Kenneth L.</td>
<td>Grant Title: Fundamental Antenna-Receiver Interactions In Metal-Based...</td>
<td>Agency: American Chemical Society</td>
<td>Project Dates: 9/1/11 - 8/31/13</td>
</tr>
<tr>
<td>PI: Landing, William M.</td>
<td>Grant Title: Atmospheric Deposition of Mercury and Trace Metals</td>
<td>Agency: University of West Florida</td>
<td>Project Dates: 1/1/08 - 12/31/11</td>
</tr>
</tbody>
</table>
PI: Landing, William M.
Grant Title: Atmospheric Deposition of Mercury and Trace Metals
Agency: University of West Florida
Project Dates: 1/1/08 - 12/31/11
Award: $114,861

PI: Landing, William M.
Grant Title: Acquisition of a Sector Magnet ICPMS
Agency: National Science Foundation
Project Dates: 4/1/11 - 3/31/13
Award: $250,000

PI: Landing, William M.
Grant Title: GEOTRACES Atlantic Section: Aerosol and Rainfall Collection
Agency: National Science Foundation
Project Dates: 8/1/11 - 7/31/12
Award: $27,091

PI: Larbalestier, David C.
Grant Title: High Field Superconductor Development and Understanding
Agency: U.S. Department of Energy
Project Dates: 4/1/07 - 3/31/12
Award: $610,000

PI: Larbalestier, David C.
Grant Title: Electro-Mechanical Characterization and Understanding of ...
Agency: Fermi National Accelerator Lab
Project Dates: 9/1/09 - 3/31/12
Award: $170,000

PI: Lee, Peter
Grant Title: Understanding & Development of High Field SCS for Fusion...
Agency: U.S. Department of Energy
Project Dates: 7/1/06 - 6/30/12
Award: $90,000

PI: Lee, Peter
Grant Title: Investigate and Gain and Understanding of the Origins of...
Agency: Fermi National Accelerator Lab
Project Dates: 2/2/10 - 12/31/12
Award: $125,000

PI: Liang, Zhiyong
Grant Title: Carbon Nanotube Buckypaper/Thermoplastic Composites...
Agency: Office of Naval Research
Project Dates: 11/22/10 - 12/31/13
Award: $25,000

PI: Liang, Zhiyong
Grant Title: Electrical Conductivity Improvement of Carbon Nanotube
Agency: Henkel Corporation Bridgewater
Project Dates: 1/10/11 - 1/10/12
Award: $95,001

PI: Liang, Zhiyong
Grant Title: Through-Thickness Mechanical and Thermal Property Enhancement
Agency: KAI LLC
Project Dates: 9/30/11 - 6/30/12
Award: $45,000

PI: Lu, Jun
Grant Title: Superconducting Wire Critical Current Test
Agency: Western Superconducting Technologies Co.
Project Dates: 8/1/11 - 6/30/12
Award: $47,190.16

PI: Oates, William
Grant Title: Development and Implementation of Piezoelectric Microjet
Agency: U.S. Army Research Office
Project Dates: 5/1/08 - 4/30/11
Award: $24,419

PI: Oates, William
Grant Title: CAREER: Materials Driven by Light: Nonlinear Photomechanical...
Agency: National Science Foundation
Project Dates: 2/15/11 - 1/31/16
Award: $400,000

PI: Pamidi, Sastry
Grant Title: Magnetic Shielding with High Temperature Superconductors
Agency: Office of Naval Research
Project Dates: 1/15/08 - 9/30/13
Award: $93,750

PI: Pamidi, Sastry
Grant Title: Magnetic Shielding with High Temperature Superconductors
Agency: Office of Naval Research
Project Dates: 1/15/08 - 9/30/13
Award: $65,000

PI: Pamidi, Sastry
Grant Title: STTR: Fabrication of Higher Temperature Semiconductors
Agency: Tai Yang Research Corp
Project Dates: 6/1/10 - 5/4/13
Award: $149,995

PI: Pamidi, Sastry
Grant Title: STTR: Fabrication of Higher Temperature Semiconductors
Agency: Tai Yang Research Corp
Project Dates: 6/1/10 - 5/4/13
Award: $9,000

PI: Paravastu, Anant K.
Grant Title: CAREER: Solid State NMR Characterization of Molecular...
Agency: National Science Foundation
Project Dates: 1/15/08 - 9/30/13
Award: $65,000

PI: Rikvold, Per A.
Grant Title: Computational Studies of Nonequilibrium Processes...
Agency: National Science Foundation
Project Dates: 9/1/11 - 8/31/14
Award: $200,000

PI: Rikvold, Per A.
Grant Title: Molecular Dynamics Simulations...
Agency: Mississippi State University
Project Dates: 4/6/11 - 10/30/11
Award: $13,515

PI: Rodgers, Ryan P.
Grant Title: Examination of Crude Oils
Agency: Nalco Company
Project Dates: 4/1/09 - 12/31/11
Award: $125,000

PI: Rodgers, Ryan P.
Grant Title: Performed Complex Organic Molecules from the Matrix of...
Agency: Search for Extra Terrestrial Intelligence
Project Dates: 6/1/11 - 9/30/12
Award: $7,750

PI: Rodgers, Ryan P.
Grant Title: Performed Complex Organic Molecules from the Matrix of...
Agency: Search for Extra Terrestrial Intelligence
Project Dates: 6/1/11 - 9/30/12
Award: $17,250
Pl: Sanchez, Jose Antonio
Grant Title: FloridaLearns STEM Scholars
Agency: Panhandle Area Educational Consortium
Project Dates: 9/13/11 - 6/30/12
Award: $28,449.58

Pl: Shatruk, Mykhailo
Grant Title: CAREER: Magnetostructural Correlations in Rare Earth-...
Agency: National Science Foundation
Project Dates: 5/1/10 - 4/30/15
Award: $100,000

Pl: Siegrist, Theo Max
Grant Title: Characterized Uncoated Magnetite Powder
Agency: Pulse Therapeutics
Project Dates: 5/19/11 - 8/31/12
Award: $3,410

Pl: Siegrist, Theo Max
Grant Title: Characterized Uncoated Magnetite Powder
Agency: Pulse Therapeutics
Project Dates: 5/19/11 - 8/31/12
Award: $6,200

Pl: Siegrist, Theo Max
Grant Title: Characterized Uncoated Magnetite Powder
Agency: Pulse Therapeutics
Project Dates: 5/19/11 - 8/31/12
Award: $2,900

Pl: Smirnov, Dmitry
Grant Title: Infrared Optical Study of Graphene in High Magnetic Fields
Agency: U.S. Department of Energy
Project Dates: 8/15/07 - 11/30/12
Award: $140,000

Pl: Smirnov, Dmitry
Grant Title: Infrared Optical Study of Graphene in High Magnetic Fields
Agency: U.S. Department of Energy
Project Dates: 8/15/07 - 11/30/12
Award: $140,000

Pl: Song, Likai
Grant Title: Eliciting B Cells to Produce Anti-HIV gp41 MPER...
Agency: Dana-Farber Cancer Institute
Project Dates: 9/1/11 - 8/31/12
Award: $9,679

Pl: Song, Likai
Grant Title: Structural Approaches to HIV-1 Immunogen Design for BNAb...
Agency: Dana-Farber Cancer Institute
Project Dates: 9/1/10 - 8/31/12
Award: $9,679

Pl: Song, Likai
Grant Title: Structural Approaches to HIV-1 Immunogen Design for BNAb...
Agency: Dana-Farber Cancer Institute
Project Dates: 9/1/10 - 8/31/12
Award: $12,906

Pl: Song, Likai
Grant Title: Eliciting Broadly Neutralizing Antibodies against Clade...
Agency: Dana-Farber Cancer Institute
Project Dates: 9/1/11 - 8/31/11
Award: $6,376

Pl: Song, Likai
Grant Title: Eliciting B Cells to Produce Anti-HIV gp41 MPER...
Agency: Dana-Farber Cancer Institute
Project Dates: 9/1/11 - 8/31/11
Award: $6,376

Pl: Song, Likai
Grant Title: Eliciting Broadly Neutralizing Antibodies against Clade...
Agency: Dana-Farber Cancer Institute
Project Dates: 9/1/11 - 8/31/12
Award: $6,376

Pl: Tozer, Stanley
Grant Title: Electron Interactions in Actinides and Related Systems
Agency: U.S. Department of Energy
Project Dates: 1/1/10 - 1/10/13
Award: $470,000

Pl: Vafek, Oskar
Grant Title: CAREER: Theoretical Approach to Dirac and Related Critical...
Agency: National Science Foundation
Project Dates: 7/1/10 - 6/30/15
Award: $84,000

Pl: Van Sciver, Steven W.
Grant Title: Liquid Helium Fluid Dynamics Studies
Agency: U.S. Department of Energy
Project Dates: 1/1/96 - 4/30/12
Award: $155,000

Pl: Van Sciver, Steven W.
Grant Title: Conduct Superfluid Helium Research in Support of...
Agency: Fermi National Accelerator Lab
Project Dates: 6/4/09 - 3/31/12
Award: $50,000

Pl: Walsh, Robert P.
Grant Title: Material Characterization CS & TF R&D
Agency: UT-Battelle LLC
Project Dates: 1/18/11 - 9/30/12
Award: $33,713

Pl: Walsh, Robert P.
Grant Title: Material Characterization CS & TF R&D
Agency: UT-Battelle LLC
Project Dates: 1/18/11 - 9/30/12
Award: $734,526

Pl: Walsh, Robert P.
Grant Title: Superconducting Wire Critical Current Test
Agency: High Performance Magnetics
Project Dates: 10/1/11 - 9/30/12
Award: $4,404

Pl: Yang, Kun
Grant Title: Design Principles for Quantum Hall States
Agency: Princeton University
Project Dates: 9/1/09 - 8/31/12
Award: $59,764

Pl: Yang, Kun
Grant Title: Unconventional Phases and Phase Transitions in Electronic...
Agency: National Science Foundation
Project Dates: 10/1/10 - 9/30/13
Award: $90,000

Pl: Zhou, Huan-Xiang
Grant Title: Theory of Protein-Protein Association
Agency: National Institute of General Medicine
Project Dates: 4/1/08 - 3/31/12
Award: $226,742
Grants Awarded to NHMFL-Affiliated Faculty at the University of Florida

As reported by the UF Office of Sponsored Research for calendar year 2011

Note: Individual investigator grants awarded to faculty is a measure of scientific productivity, similar to publications, presentations, and patents. The information below is presented in this context. Because individual awards are administered differently (by different agencies; under different terms), this information should not be aggregated.

PI: Abernathy, C.
- Grant Title: A 21st Century Approach to Electronic Device Reliability
- **Agency:** U.S. Air Force
- Project Dates: 5/15/08 - 8/14/13
- Award: $64,836

PI: Andraaka, B.
- Grant Title: Investigation of Novel Strongly Correlated Electron States with the Emphasis on Pr-Based Systems
- **Agency:** U.S. Department of Energy
- Project Dates: 2/1/99 - 1/31/14
- Award: $109,345

PI: Angerhofer, A.
- Grant Title: The Catalytic Mechanism of Oxalate Decarboxylase Studied By Advanced EPR Experiments
- **Agency:** National Science Foundation
- Project Dates: 7/1/08 - 6/30/12
- Award: $44,850

PI: Angerhofer, A.
- Grant Title: Ex Vivo Analysis of Irradiated Finger/Toe Nails by EPR as a Biodosimeter
- **Agency:** Dartmouth College
- Project Dates: 2/1/10 - 1/31/12
- Award: $97,678

PI: Blackband, S.J.
- Grant Title: MR Microscopy at the Cellular Level Using Microsurface RF Coils
- **Agency:** Florida State University
- Project Dates: 2/1/10 - 1/31/12
- Award: $86,902

PI: Blackband, S.J.
- Grant Title: Development of MR Microscopy at the Cellular Level
- **Agency:** National Institutes of Health
- Project Dates: 9/30/10 - 8/31/14
- Award: $521,420

PI: Bowers, C.R.
- Grant Title: Inducing Molecular Single File Diffusion by Co-Adsorption in One Dimensional Channels for Gas Separations And Catalysis
- **Agency:** National Science Foundation
- Project Dates: 6/22/10 - 8/31/13
- Award: $168,147

PI: Cheng, H.P.
- Grant Title: Understanding and Reducing Thermal Noise via Atomistic Simulations
- **Agency:** National Science Foundation
- Project Dates: 6/15/11 - 8/31/14
- Award: $105,000

PI: Cheng, H.P.
- Grant Title: A Computational Approach to Complex Junctions and Interfaces
- **Agency:** U.S. Department Of Energy
- Project Dates: 9/1/02 - 12/30/11
- Award: $220,000

PI: Christou, G.
- Grant Title: Collaborative Research: Molecular Spintronics with Single-Molecule Magnets
- **Agency:** National Science Foundation
- Project Dates: 5/1/10 - 4/30/13
- Award: $66,782

PI: Christou, G.
- Grant Title: Transition Metal Clusters as Single-Molecule Magnets
- **Agency:** National Science Foundation
- Project Dates: 9/1/09 - 8/31/12
- Award: $174,000
PI: Edison, A. S.
Grant Title: Comparative Behavioral Metabolomics in Nematodes
Agency: National Institutes of Health
Project Dates: 5/1/09 - 2/28/13
Award: $265,370

PI: Eyler, J.R.
Grant Title: Pire: A US-Dutch Mass Spectrometry Consortium for Advanced Modeling and Biological Structure and Imaging Applications
Agency: Wayne State University
Project Dates: 10/1/07 - 9/30/12
Award: $77,624

PI: Eyler, J.R.
Grant Title: Pire: A US-Dutch Mass Spectrometry Consortium for Advanced Modeling and Biological Structure and Imaging Applications
Agency: Wayne State University
Project Dates: 10/1/07 - 9/30/12
Award: $74,142

PI: Edison, A. S.
Grant Title: National High Magnetic Field Laboratory (NHMFL) Project
Agency: Florida State University
Project Dates: 1/1/08 - 12/31/12
Award: $419,345

PI: Edison, A. S.
Grant Title: National High Magnetic Field Laboratory (NHMFL) Project
Agency: Florida State University
Project Dates: 1/1/08 - 12/31/12
Award: $26,538

PI: Edison, A. S.
Grant Title: Improved NMR Technology for Natural Products and Metabolomics
Agency: National Institutes of Health
Project Dates: 8/1/09 - 6/30/13
Award: $336,336

PI: Eyler, J.R.
Grant Title: Pire: A US-Dutch Mass Spectrometry Consortium for Advanced Modeling and Biological Structure and Imaging Applications
Agency: Wayne State University
Project Dates: 10/1/07 - 9/30/12
Award: $130,000

PI: Hershfield, S.P.
Grant Title: REU Site: Materials Physics at the University of Florida (Participant Support)
Agency: National Science Foundation
Project Dates: 4/1/09 - 3/31/12
Award: $101,475

PI: Hershfield, S.P.
Grant Title: REU Site: Materials Physics at the University Of Florida
Agency: National Science Foundation
Project Dates: 4/1/09 - 3/31/12
Award: $18,525

PI: Hirschfeld, P. J.
Grant Title: Grains, Wires and Interfaces of Cuprate Superconductors
Agency: U.S. Department Of Energy
Project Dates: 9/15/11 - 8/31/12
Award: $90,000

PI: Ingersent, K.
Grant Title: Materials World Network - Collaborative Research: Symmetry, Local-Environment and Time-Dependent Effects In Nanoscale...
Agency: National Science Foundation
Project Dates: 9/16/10 - 9/30/13
Award: $180,980

PI: Long, J.R.
Grant Title: Console Upgrade for Microimaging and Solid State NMR Spectroscopy at 600 MHz
Agency: National Institutes of Health
Project Dates: 3/15/11 - 3/14/13
Award: $449,900

PI: Luesch, H.
Grant Title: Mitochondrial Oxidative Stress in the Retinal Pigment Epithelium as a Model for Atrophic Macular Degeneration
Agency: National Institutes of Health
Project Dates: 3/1/11 - 2/28/14
Award: $51,150

PI: Mareci, T.H.
Grant Title: Computational Transport Models for Convection-Enhanced CNS Delivery
Agency: National Institutes of Health
Project Dates: 7/1/08 - 7/31/13
Award: $103,011

Pl: Mareci, T.H.
Grant Title: Correlating Disturbed Sleep and Damaged White Matter Tracts in the Brainstem in Traumatic Brain Injury Using Diffusion...
Agency: Florida Department of Health
Project Dates: 7/1/11 - 6/30/12
Award: $67,882

Pl: Mareci, T.H.
Grant Title: Neuroimage Processing for Rehabilitation Research for Neuroimaging Core
Agency: U.S. Department of Veterans Affairs
Project Dates: 9/12/11 - 9/11/12
Award: $10,000

Pl: Maslov, D.
Grant Title: Materials World Network: Control of the Electron Nuclear Interaction in Nanoelectronic Devices
Agency: National Science Foundation
Project Dates: 8/1/09 - 7/31/13
Award: $85,000

Pl: Pearton, S.J.
Grant Title: Fundamental Studies and Modeling of Radiation Effects in Gan-Based Heterostructures
Agency: U.S. Department of Defense
Project Dates: 4/27/11 - 5/1/14
Award: $120,000

Pl: Pearton, S.J.
Grant Title: Air/Gan Hemt Device Life-Time and Reliability Testing
Agency: SVT Associates Inc
Project Dates: 3/3/09 - 7/2/11
Award: $26,035

Pl: Pearton, S.J.
Grant Title: A 21st Century Approach to Electronic Device Reliability
Agency: U.S. Department of the Air Force
Project Dates: 5/15/08 - 8/14/13
Award: $66,731

Pl: Pearton, S.J.
Grant Title: Low Cost, Scalable Manufacturing of Surface-Engineered Superhard (SESH) Substrates for Next Generation Electronic & Phot...
Agency: SINMAT
Project Dates: 2/1/11 - 1/20/12
Award: $141,000

Pl: Pearton, S.J.
Grant Title: Revenue for Alumni / Endowed Professorship
Agency: UF Foundation
Project Dates: 9/1/05 - 6/30/15
Award: $17,994

Pl: Richards, N.G.
Grant Title: Biochemical Studies of Oxalate Decarboxylase
Agency: National Institutes of Health
Project Dates: 4/15/10 - 6/30/14
Award: $263,148

Pl: Richards, N.G.
Grant Title: Landscapes in Catalytic Nucleic Acids
Agency: Foundation for Applied Molecular Evolution
Project Dates: 8/16/11 - 8/23/12
Award: $40,883

Pl: Rinzler, A.G.
Grant Title: SWNT Based Air Cathodes for Fuel Cells & Metal Air Batteries
Agency: nRadiance
Project Dates: 12/16/10 - 12/15/11
Award: $41,000

Pl: Rinzler, A.G.
Grant Title: Carbon Nanotube-Based Transparent Electrodes for Polymer Emitter, Electro...
Agency: nRadiance
Project Dates: 7/15/05 - 12/31/12
Award: $328,010

Pl: Rinzler, A.G.
Grant Title: Carbon Nanotube-Based Transparent Electrodes for Polymer Emitter, Electro...
Agency: nRadiance
Project Dates: 7/15/05 - 8/31/12
Award: $123,151

Pl: Stanton, C.J.
Grant Title: Carrier, Phonon and THz Dynamics in Narrow Gap and Carbon Based Nanostructures
Agency: National Science Foundation
Project Dates: 8/15/11 - 8/31/13
Award: $100,000

Pl: Stanton, C.J.
Grant Title: US-Japan Cooperative Research and Education on Terahertz Dynamics in Nanostructures
Agency: Rice University
Project Dates: 9/15/10 - 8/31/12
Award: $64,603

Pl: Stewart, G.R.
Grant Title: Fe Pnictide and F-Electron Novel Materials: Magnetism, Superconductivity, and Quantum Criticality
Agency: U.S. Department of Energy
Project Dates: 10/1/09 - 11/30/11
Award: $150,000

Pl: Sullivan, N.S.
Grant Title: Revitalization of University of Florida Helium Liquefaction and Recovery System
Agency: National Science Foundation
Project Dates: 9/1/10 - 8/31/13
Award: $1,683,544

Pl: Sullivan, N.S.
Grant Title: National High Magnetic Field Laboratory--High B/T Facility
Agency: Florida State University
Project Dates: 1/1/08 - 12/31/12
Award: $193,686

Pl: Sullivan, N.S.
Grant Title: National High Magnetic Field Laboratory--High B/T Facility
Agency: Florida State University
Project Dates: 1/1/08 - 12/31/12
Award: $37,022

Pl: Sullivan, N.S.
Grant Title: National High Magnetic Field Laboratory--High B/T Facility
Agency: Florida State University
Project Dates: 1/1/08 - 12/31/12
Award: $60,000
PI: Sullivan, N.S.
Grant Title: Miscellaneous Donors
Agency: Miscellaneous Donors
Project Dates: 7/30/89 - 6/30/15
Award: $12,810

PI: Sullivan, N.S.
Grant Title: Miscellaneous Donors
Agency: Miscellaneous Donors
Project Dates: 7/30/89 - 6/30/15
Award: $13,260

PI: Takano, Y.
Grant Title: National High Magnetic Field Laboratory - User Collaboration Grants Program
Agency: Florida State University
Project Dates: 7/1/11 - 12/31/12
Award: $100,964

PI: Talham, D.R.
Grant Title: Magnetic and Photomagnetic Coordination Polymer Heterostructures
Agency: National Science Foundation
Project Dates: 7/1/10 - 6/30/13
Award: $130,000

PI: Tanner, D.B.
Grant Title: Development of High Power Continuous Wave Lasers, Components and Optical Contamination Diagnostics for Future Ground-Base
Agency: National Science Foundation
Project Dates: 8/1/11 - 7/31/12
Award: $85,000

PI: Tanner, D. B.
Grant Title: Time-Resolved Far-Infrared Experiments: Implications for Nanotechnology
Agency: U.S. Department of Energy
Project Dates: 5/18/11 - 5/17/12
Award: $12,000

PI: Tanner, D. B.
Grant Title: Task N: Research in High Energy Physics (Experimental and Theoretical) Together with Quarknet Educational Outreach
Agency: U.S. Department of Energy
Project Dates: 5/15/02 - 5/14/12
Award: $165,000

PI: Tanner, D. B.
Grant Title: Task N: Research in High Energy Physics (Experimental and Theoretical) Together with Quarknet Educational Outreach
Agency: U.S. Department of Energy
Project Dates: 3/1/10 - 6/30/12
Award: $112,212

PI: Tanner, D. B.
Grant Title: Task N: Research in High Energy Physics (Experimental and Theoretical) Together with Quarknet Educational Outreach
Agency: U.S. Department of Energy
Project Dates: 3/1/10 - 6/30/12
Award: $24,787
2011 USER FACILITY STATISTICS

DC Field Facility

Note: A user is an individual or a member of a research group that is allocated magnet time. The user does not have to be “on site” for the experiment. A researcher who sends samples for analysis; a scientist who uses new lab technologies to conduct experiments remotely; or a PI who sends students to the Magnet Lab, are all considered users. All user numbers reflect distinct individuals, i.e. if a user has multiple proposals (different scientific thrusts) or is allocated magnet time more than once during the year, he/she is counted only once.
TABLE 1

DC Field Facility: User Demographics

<table>
<thead>
<tr>
<th></th>
<th>Users</th>
<th>Female</th>
<th>Minority(^1)</th>
<th>Users Present(^3,7)</th>
<th>Users Operating Remotely(^4,7)</th>
<th>Users Sending Sample(^5,7)</th>
<th>Off-Site Collaborators(^6,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>161</td>
<td>15</td>
<td>7</td>
<td>109</td>
<td>0</td>
<td>0</td>
<td>52</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>70</td>
<td>8</td>
<td>3</td>
<td>34</td>
<td>0</td>
<td>5</td>
<td>31</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>46</td>
<td>8</td>
<td>2</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>16</td>
<td>5</td>
<td>1</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Students(^2), U.S.</td>
<td>123</td>
<td>29</td>
<td>7</td>
<td>106</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Students(^2), non-U.S.</td>
<td>37</td>
<td>6</td>
<td>1</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>453</td>
<td>71</td>
<td>21</td>
<td>334</td>
<td>0</td>
<td>5</td>
<td>114</td>
</tr>
</tbody>
</table>

1 Minority status includes American Indian, Alaska Native, Black or African American, Hispanic, Native Hawaiian or other Pacific Islander. Minority status excludes Asian and White-Not of Hispanic Origin.

2 “Students” generally refers to graduate students, but may include a few undergraduate students.

3 “Users Present” includes users physically present in the MagLab user facility during the experiment AND any MagLab-Affiliated or Local users on the experiment.

4 “Users Operating Remotely” refers to users who operate the magnet system from a remote location. Remote operations are not currently available in all facilities.

5 “Users Sending Sample” refers to users who send the sample to the facility and the experiment is conducted by in-house user support personnel.

Users at UF, FSU, and LANL cannot be “sample senders” for facilities located on their campuses.

6 “Off-Site Collaborators” are scientific or technical participants on the experiment; who will not be present, sending sample, or operating the magnet system remotely; and who are not located on the campus of that facility (i.e., they are off-site).

7 The total of Users Present + Users Operating Remotely + Users Sending Sample + and Off-Site Collaborators will equal the total number of users.

TABLE 2

DC Field Facility: User Affiliations

<table>
<thead>
<tr>
<th></th>
<th>Users</th>
<th>NHMFL Affiliated Users(^1)</th>
<th>Local Users(^2)</th>
<th>University Users(^3,4)</th>
<th>Industry Users (^4)</th>
<th>National Lab Users (^3,4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>161</td>
<td>54</td>
<td>7</td>
<td>125</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>52</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>46</td>
<td>11</td>
<td>8</td>
<td>36</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>123</td>
<td>13</td>
<td>11</td>
<td>121</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>453</td>
<td>78</td>
<td>26</td>
<td>381</td>
<td>2</td>
<td>70</td>
</tr>
</tbody>
</table>

1 NHMFL-Affiliated users are defined as anyone in the lab’s personnel system [i.e. on our Web site/directory], even if they travel to another site. Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site. The sum of NHMFL-Affiliated and Local users equals what was formerly referred to as “Internal Investigators”.

Note for Annual Reporting: Due to programming limitations and the dynamic nature of information in this system, Local Users may include a few NHMFL-Affiliated users who left during the year and whose records have not yet been updated.

2 In addition to external users, all users with primary affiliations at FSU, UF, or FAMU are reported in this category, even if they are also NHMFL associates.

3 In addition to external users, users with primary affiliations at NHMFL/LANL are reported in this category.

4 The total of university, industry, and national lab users will equal the total number of users.
TABLE 3

DC Field Facility: Users by Discipline

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>161</td>
<td>108</td>
<td>14</td>
<td>21</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>70</td>
<td>62</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>46</td>
<td>36</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>16</td>
<td>14</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>123</td>
<td>98</td>
<td>10</td>
<td>12</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>37</td>
<td>34</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>453</td>
<td>352</td>
<td>31</td>
<td>41</td>
<td>25</td>
<td>4</td>
</tr>
</tbody>
</table>

TABLE 4

DC Field Facility: Experimental Requests¹ for Magnet Time

<table>
<thead>
<tr>
<th>Weeks Requested</th>
<th>Weeks Granted</th>
<th>Weeks Declined</th>
</tr>
</thead>
<tbody>
<tr>
<td>344</td>
<td>289 (76.46%)</td>
<td>89 (23.54%)</td>
</tr>
</tbody>
</table>

¹ Due to operational differences, experimental requests for magnet time are measured differently among facilities. A request for NMR magnet time is measured in the number of days requested. A request for DC Field magnet time is measured in weeks. In the PFF, High B/T, EMR, and ICR facilities, the number of requests is equal to the number of experiments. For any given year, the time (or requests) granted and the time (or requests) declined may not equal the total number of requests. This is because (1) magnet time may be granted to experiments submitted in a prior year and/or (2) in NMR and DC Field facilities, the days or weeks granted may be more (as in the case of a user getting exceptional results) or less than what was requested due to operational limitations.

TABLE 5

DC Field Facility: Research Proposals¹ Profile with Magnet Time

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Number of Proposals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensed Matter Physics</td>
<td>127</td>
</tr>
<tr>
<td>Chemistry, Geochemistry</td>
<td>8</td>
</tr>
<tr>
<td>Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Magnets, Materials, Testing, Instruments</td>
<td>15</td>
</tr>
<tr>
<td>Biology, Biochemistry, Biophysics</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>157</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Proposals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minority<sup>2</sup></td>
</tr>
<tr>
<td>Female<sup>3</sup></td>
</tr>
</tbody>
</table>

¹ A “proposal” may have associated with it a single experiment or a group of closely related experiments. A PI may have more than one proposal.

² The number of proposals satisfying one of the following two conditions: (a) the PI is a minority OR (b) the PI is a non-minority working at a minority-serving college or university AND the proposal includes minority participants.

³ The number of proposals satisfying one of the following two conditions: (a) the PI is a female OR (b) the PI is a male working at a college or university for women AND the proposal includes female participants.
TABLE 6

DC Field Facility: Operations Statistics
Number of Magnet Days¹

<table>
<thead>
<tr>
<th></th>
<th>Resistive Magnets & Hybrid</th>
<th>Superconducting Magnets</th>
<th>Total Days Allocated /User Affiliated</th>
<th>Percentage Allocated /User Affiliated</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL-Affiliated²</td>
<td>115.17</td>
<td>113.00</td>
<td>228.17</td>
<td>14.89%</td>
</tr>
<tr>
<td>Local³</td>
<td>18.84</td>
<td>118.00</td>
<td>136.84</td>
<td>8.93%</td>
</tr>
<tr>
<td>U.S. University</td>
<td>278.32</td>
<td>464.00</td>
<td>742.32</td>
<td>48.44%</td>
</tr>
<tr>
<td>U.S. Govt. Lab.</td>
<td>53.62</td>
<td>40.00</td>
<td>93.62</td>
<td>6.11%</td>
</tr>
<tr>
<td>U.S. Industry</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00%</td>
</tr>
<tr>
<td>Non-U.S.</td>
<td>211.39</td>
<td>102.00</td>
<td>313.39</td>
<td>20.45%</td>
</tr>
<tr>
<td>Test, Calibration, Set-up, Maintenance</td>
<td>10.42</td>
<td>7.75</td>
<td>18.16</td>
<td>1.19%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>687.76</td>
<td>844.75</td>
<td>1532.50</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

¹ User Units are defined as magnet days. For the DC Field Facility, one magnet day is defined as 7 hours in a water-cooled resistive or hybrid magnet. Using this definition, a typical 24-hour day in the DC Field Facility contains three or four “magnet days.” For experiments in the superconducting magnets, one “magnet day” is defined as 24 hours of use.

² NHMFL-Affiliated users are defined as anyone in the lab’s personnel system [i.e. on our Web site/directory], even if they travel to another site. Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site. The sum of NHMFL-Affiliated and Local usage equals what was formerly referred to as usage by “Internal Investigators.”

TABLE 7

DC Field Facility: Operations by Discipline
Number of Magnet Days¹

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL-Affiliated²</td>
<td>228.17</td>
<td>202.05</td>
<td>7.99</td>
<td>4.25</td>
<td>13.89</td>
<td>0.00</td>
</tr>
<tr>
<td>Local³</td>
<td>136.84</td>
<td>40.84</td>
<td>96.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>U.S. University</td>
<td>742.32</td>
<td>710.51</td>
<td>20.23</td>
<td>0.00</td>
<td>5.94</td>
<td>5.64</td>
</tr>
<tr>
<td>U.S. Govt. Lab.</td>
<td>93.62</td>
<td>87.32</td>
<td>0.00</td>
<td>0.00</td>
<td>6.30</td>
<td>0.00</td>
</tr>
<tr>
<td>U.S. Industry</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Non-U.S.</td>
<td>313.39</td>
<td>293.67</td>
<td>0.00</td>
<td>15.09</td>
<td>4.62</td>
<td>0.00</td>
</tr>
<tr>
<td>Test, Calibration, Set-up, Maintenance</td>
<td>18.16</td>
<td>3.56</td>
<td>0.00</td>
<td>0.00</td>
<td>14.60</td>
<td>0.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1532.50</td>
<td>1337.95</td>
<td>124.22</td>
<td>19.34</td>
<td>45.35</td>
<td>5.64</td>
</tr>
</tbody>
</table>

¹ User Units are defined as magnet days. For the DC Field Facility, one magnet day is defined as 7 hours in a water-cooled resistive or hybrid magnet. Using this definition, a typical 24-hour day in the DC Field Facility contains three or four “magnet days.”

² NHMFL-Affiliated users are defined as anyone in the lab’s personnel system [i.e. on our Web site/directory], even if they travel to another site. Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site. The sum of NHMFL-Affiliated and Local usage equals what was formerly referred to as usage by “Internal Investigators.”
TABLE 8
DC Field Facility: New User PIs\(^1\) (25)

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Proposal</th>
<th>Year of Magnet Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosche, Malte</td>
<td>University of Cambridge</td>
<td>P01620</td>
<td>2011</td>
</tr>
<tr>
<td>van der Laan, Danko</td>
<td>National Institute of Standards and Technology</td>
<td>P01693</td>
<td>2011</td>
</tr>
<tr>
<td>Howarth, Thomas</td>
<td>NAVSEA Division Newport</td>
<td>P01702</td>
<td>2011</td>
</tr>
<tr>
<td>Zhou, Xiaoling</td>
<td>Kunming University of Science and Technology</td>
<td>P01706</td>
<td>2011</td>
</tr>
<tr>
<td>Cao, Yunwei Charles</td>
<td>University of Florida</td>
<td>P01715</td>
<td>2011</td>
</tr>
<tr>
<td>Stoica, Vladimir</td>
<td>University of Michigan</td>
<td>P01718</td>
<td>2011</td>
</tr>
<tr>
<td>Kim, Jun Sung</td>
<td>POSTECH</td>
<td>P01719</td>
<td>2011</td>
</tr>
<tr>
<td>Zhang, Lin</td>
<td>NHMFL</td>
<td>P01721</td>
<td>2011</td>
</tr>
<tr>
<td>Greven, Martin</td>
<td>University of Minnesota</td>
<td>P01725</td>
<td>2011</td>
</tr>
<tr>
<td>Maesato, Mitsuhiko</td>
<td>Kyoto University</td>
<td>P01781</td>
<td>2011</td>
</tr>
<tr>
<td>Li, Lu</td>
<td>University of Michigan</td>
<td>P01822</td>
<td>2011</td>
</tr>
<tr>
<td>Andrei, Eva</td>
<td>Rutgers The State University of New Jersey</td>
<td>P01823</td>
<td>2011</td>
</tr>
<tr>
<td>Zhang, Chi</td>
<td>Peking University</td>
<td>P01824</td>
<td>2011</td>
</tr>
<tr>
<td>Graf, David</td>
<td>Florida State University</td>
<td>P01832</td>
<td>2012</td>
</tr>
<tr>
<td>Ignatchik, Oleg</td>
<td>Helmholtz-Zentrum Dresden-Rossendorf</td>
<td>P01834</td>
<td>2012</td>
</tr>
<tr>
<td>Yuan, Huiqiu</td>
<td>Zhejiang University</td>
<td>P01840</td>
<td>2011</td>
</tr>
<tr>
<td>Jarillo-Herrero, Pablo</td>
<td>MIT</td>
<td>P01842</td>
<td>2011</td>
</tr>
<tr>
<td>Haga, Yoshinori</td>
<td>Japan Atomic Energy Agency</td>
<td>P01845</td>
<td>2012</td>
</tr>
<tr>
<td>Searles, Thomas</td>
<td>Morehouse College</td>
<td>P01910</td>
<td>Scheduled 2012</td>
</tr>
<tr>
<td>Sarkar, Biprajit</td>
<td>Freie Universität Berlin</td>
<td>P01919</td>
<td>2011</td>
</tr>
<tr>
<td>Mallah, Talal</td>
<td>Université Paris Sud XI</td>
<td>P01924</td>
<td>Scheduled 2012</td>
</tr>
<tr>
<td>Wang, Hailin</td>
<td>University of Oregon</td>
<td>P01928</td>
<td>Scheduled 2012</td>
</tr>
<tr>
<td>Prozorov, Ruslan</td>
<td>Ames Laboratory-Iowa State University</td>
<td>P01930</td>
<td>2012</td>
</tr>
<tr>
<td>Hanisch, Jens</td>
<td>Leibniz Institute for Solid State and Materials Research IFD Dresden</td>
<td>P01938</td>
<td>2012</td>
</tr>
<tr>
<td>Armitage, N. Peter</td>
<td>The Johns Hopkins University</td>
<td>P01943</td>
<td>2012</td>
</tr>
</tbody>
</table>

\(^1\) This table lists users serving as a principal investigator for the first time, and whose proposal was submitted during this year. It also shows the year in which magnet time was received. TBD stands for To Be Determined, indicating it has not yet been allotted magnet time.
Users, Requests & Operations

A user is an individual or a member of a research group that is allocated magnet time. The user does not have to be “on site” for the experiment. A researcher who sends samples for analysis; a scientist who uses new lab technologies to conduct experiments remotely; or a PI who sends students to the Magnet Lab, are all considered users. All user numbers reflect distinct individuals, i.e. if a user has multiple proposals (different scientific thrusts) or is allocated magnet time more than once during the year, he/she is counted only once.
TABLE 1

Pulsed Field Facility: User Demographics

<table>
<thead>
<tr>
<th>Users</th>
<th>Female</th>
<th>Minority<sup>1</sup></th>
<th>Users Present<sup>5,7</sup></th>
<th>Users Operating Remotely<sup>5,7</sup></th>
<th>Users Sending Sample<sup>5,7</sup></th>
<th>Off-Site Collaborators<sup>5,7</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>74</td>
<td>3</td>
<td>5</td>
<td>49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>32</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>26</td>
<td>5</td>
<td>2</td>
<td>22</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Students<sup>2</sup>, U.S.</td>
<td>13</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Students<sup>2</sup>, non-U.S.</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>152</td>
<td>17</td>
<td>13</td>
<td>85</td>
<td>0</td>
<td>30</td>
</tr>
</tbody>
</table>

1 Minority status includes American Indian, Alaska Native, Black or African American, Hispanic, Native Hawaiian or other Pacific Islander. Minority status excludes Asian and White-Not of Hispanic Origin.

2 “Students” generally refers to graduate students, but may include a few undergraduate students.

3 Users Present includes users physically present in the MagLab user facility during the experiment AND any MagLab-Affiliated or Local users on the experiment.

4 Users Operating Remotely refers to users who operate the magnet system from a remote location. Remote operations are not currently available in all facilities.

5 Users Sending Sample refers to users who send the sample to the facility and the experiment is conducted by in-house user support personnel. Users at UF, FSU, and LANL cannot be “sample senders” for facilities located on their campuses.

6 “Off-Site Collaborators” are scientific or technical participants on the experiment; who will not be present, sending sample, or operating the magnet system remotely; and who are not located on the campus of that facility (i.e., they are off-site).

7 The total of Users Present + Users Operating Remotely + Users Sending Sample + and Off-Site Collaborators will equal the total number of users.

TABLE 2

Pulsed Field Facility: User Affiliations

<table>
<thead>
<tr>
<th>Users</th>
<th>NHMFL Affiliated Users<sup>1</sup></th>
<th>Local Users<sup>1</sup></th>
<th>University Users<sup>2,4</sup></th>
<th>Industry Users<sup>4</sup></th>
<th>National Lab Users<sup>3,4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>74</td>
<td>22</td>
<td>23</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>26</td>
<td>9</td>
<td>7</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>13</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>152</td>
<td>35</td>
<td>32</td>
<td>82</td>
<td>0</td>
</tr>
</tbody>
</table>

1 NHMFL-Affiliated users are defined as anyone in the lab’s personnel system (i.e. on our Web site/directory), even if they travel to another site. Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site. The sum of NHMFL-Affiliated and Local users equals what was formerly referred to as “Internal Investigators”. Note for Annual Reporting: Due to programming limitations and the dynamic nature of information in this system, Local Users may include a few NHMFL-Affiliated users who left during the year and whose records have not yet been updated.

2 In addition to external users, all users with primary affiliations at FSU, UF, or FAMU are reported in this category, even if they are also NHMFL associates.

3 In addition to external users, users with primary affiliations at NHMFL/LANL are reported in this category.

4 The total of university, industry, and national lab users will equal the total number of users.
TABLE 3

Pulsed Field Facility: Users by Discipline

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Users</th>
<th>Condensed Matter Physics</th>
<th>Chemistry, Geochemistry</th>
<th>Engineering</th>
<th>Magnets, Mats., Testing, Instruments</th>
<th>Biology, Biochemistry, Biophysics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>74</td>
<td>62</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>32</td>
<td>30</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>26</td>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>13</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>152</td>
<td>130</td>
<td>18</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE 4

Pulsed Field Facility: Experimental Requests\(^1\) for Magnet Time

<table>
<thead>
<tr>
<th>Experimental Requests</th>
<th>Experimental Requests Granted</th>
<th>Experimental Requests Declined</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td>126 (70.39%)</td>
<td>53 (29.61%)</td>
</tr>
</tbody>
</table>

\(^1\) Due to operational differences, experimental requests for magnet time are measured differently among facilities. A request for NMR magnet time is measured in the number of days requested. A request for DC Field magnet time is measured in weeks. In the PFF, High B/T, EMR, and ICR facilities, the number of requests is equal to the number of experiments. For any given year, the time (or requests) granted and the time (or requests) declined may not equal the total number of requests. This is because (1) magnet time may be granted to experiments submitted in a prior year and/or (2) in NMR and DC Field facilities, the days or weeks granted may be more (as in the case of a user getting exceptional results) or less than what was requested due to operational limitations.

TABLE 5

Pulsed Field Facility: Research Proposals\(^1\) Profile with Magnet Time

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Number of Proposals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensed Matter Physics</td>
<td>55</td>
</tr>
<tr>
<td>Chemistry, Geochemistry</td>
<td>3</td>
</tr>
<tr>
<td>Engineering</td>
<td>0</td>
</tr>
<tr>
<td>Magnets, Materials, Testing, Instruments</td>
<td>4</td>
</tr>
<tr>
<td>Biology, Biochemistry, Biophysics</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Number of Proposals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minority(^2)</td>
<td>7</td>
</tr>
<tr>
<td>Female(^3)</td>
<td>8</td>
</tr>
</tbody>
</table>

\(^1\) A “proposal” may have associated with it a single experiment or a group of closely related experiments. A PI may have more than one proposal.

\(^2\) The number of proposals satisfying one of the following two conditions: (a) the PI is a minority OR (b) the PI is a non-minority working at a minority-serving college or university AND the proposal includes minority participants.

\(^3\) The number of proposals satisfying one of the following two conditions: (a) the PI is a female OR (b) the PI is a male working at a college or university for women AND the proposal includes female participants.
TABLE 6
Pulsed Field Facility: Operations Statistics

<table>
<thead>
<tr>
<th>Disciplines</th>
<th>Supercond.</th>
<th>Short Pulse</th>
<th>Mid Pulse</th>
<th>Long Pulse</th>
<th>100 T</th>
<th>Single Turn</th>
<th>Total Days Allocated / User Affiliated</th>
<th>Percentage Allocated / User Affiliated</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL-Affiliated²</td>
<td>270.00</td>
<td>129.00</td>
<td>5.00</td>
<td>4.00</td>
<td>4.00</td>
<td>5.00</td>
<td>417.00</td>
<td>32.60%</td>
</tr>
<tr>
<td>Local²</td>
<td>165.00</td>
<td>36.00</td>
<td>5.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>206.00</td>
<td>16.11%</td>
</tr>
<tr>
<td>U.S. University</td>
<td>193.00</td>
<td>78.00</td>
<td>5.00</td>
<td>6.00</td>
<td>58.00</td>
<td>345.00</td>
<td>26.97%</td>
<td></td>
</tr>
<tr>
<td>U.S. Govt. Lab.</td>
<td>5.00</td>
<td>64.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>82.00</td>
<td></td>
<td>6.41%</td>
</tr>
<tr>
<td>U.S. Industry</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00%</td>
</tr>
<tr>
<td>Non-U.S.</td>
<td>97.00</td>
<td>132.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>229.00</td>
<td>17.90%</td>
<td></td>
</tr>
<tr>
<td>Test, Calibration, Set-up, Maintenance</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>730.00</td>
<td>439.00</td>
<td>15.00</td>
<td>9.00</td>
<td>10.00</td>
<td>76.00</td>
<td>1279.00</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

1 User Units are defined as magnet days. For the Pulsed Field Facility, one magnet day is defined as 12 hours in any pulsed magnet system.

For experiments in the superconducting magnets, one “magnet day” is defined as 24 hours of use.

2 NHMFL-Affiliated users are defined as anyone in the lab’s personnel system (i.e. on our Web site/directory), even if they travel to another site. Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site.

The sum of NHMFL-Affiliated and Local usage equals what was formerly referred to as usage by “Internal Investigators.”

TABLE 7
Pulsed Field Facility: Operations by Discipline

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL-Affiliated²</td>
<td>417.00</td>
<td>282.00</td>
<td>0.00</td>
<td>0.00</td>
<td>135.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Local²</td>
<td>206.00</td>
<td>185.00</td>
<td>12.00</td>
<td>0.00</td>
<td>9.00</td>
<td>0.00</td>
</tr>
<tr>
<td>U.S. University</td>
<td>345.00</td>
<td>317.00</td>
<td>28.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>U.S. Govt. Lab.</td>
<td>82.00</td>
<td>82.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>U.S. Industry</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Non-U.S.</td>
<td>229.00</td>
<td>229.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Test, Calibration, Set-up, Maintenance</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1279.00</td>
<td>1095.00</td>
<td>40.00</td>
<td>0.00</td>
<td>144.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

1 User Units are defined as magnet days. For the Pulsed Field Facility, one magnet day is defined as 12 hours in any pulsed magnet system.

For experiments in the superconducting magnets, one “magnet day” is defined as 24 hours of use.

2 NHMFL-Affiliated users are defined as anyone in the lab’s personnel system (i.e. on our Web site/directory), even if they travel to another site. Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site.

The sum of NHMFL-Affiliated and Local usage equals what was formerly referred to as usage by “Internal Investigators.”
TABLE 8

Pulsed Field Facility: New User PIs\(^1\) (14)

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Proposal</th>
<th>Year of Magnet Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daou, Ramzy</td>
<td>Max Planck Institute for Chemical Physics of Solids</td>
<td>P01624</td>
<td>2011</td>
</tr>
<tr>
<td>Friedman, Jonathan</td>
<td>Amherst College</td>
<td>P01629</td>
<td>2011</td>
</tr>
<tr>
<td>Bulmer, John</td>
<td>AFRL</td>
<td>P01662</td>
<td>2011</td>
</tr>
<tr>
<td>Taylor, Antoniette</td>
<td>Los Alamos National Laboratory</td>
<td>P01775</td>
<td>2011</td>
</tr>
<tr>
<td>Wang, Yayu</td>
<td>Tsinghua University</td>
<td>P01778</td>
<td>2011</td>
</tr>
<tr>
<td>Cheong, Sang Wook</td>
<td>Rutgers University</td>
<td>P01793</td>
<td>2011</td>
</tr>
<tr>
<td>Tokunaga, Masashi</td>
<td>University of Tokyo ISSP</td>
<td>P01807</td>
<td>2011</td>
</tr>
<tr>
<td>Kondo, Akihiro</td>
<td>University of Tokyo</td>
<td>P01808</td>
<td>2011</td>
</tr>
<tr>
<td>Haga, Yoshinori</td>
<td>Japan Atomic Energy Agency</td>
<td>P01815</td>
<td>2011</td>
</tr>
<tr>
<td>Hwang, Harold</td>
<td>Stanford University</td>
<td>P01880</td>
<td>2011</td>
</tr>
<tr>
<td>Kwon, Yong-Seung</td>
<td>SungKyunKwon University</td>
<td>P01914</td>
<td>2011</td>
</tr>
<tr>
<td>McQueen, Tyrel</td>
<td>Johns Hopkins University</td>
<td>P01940</td>
<td>2011</td>
</tr>
<tr>
<td>May, Steven</td>
<td>Drexel University</td>
<td>P01957</td>
<td>2011</td>
</tr>
<tr>
<td>Raptis, Raphael</td>
<td>University of Puerto Rico</td>
<td>P01965</td>
<td>Scheduled 2012</td>
</tr>
</tbody>
</table>

\(^1\) This table lists users serving as a principal investigator for the first time, and whose proposal was submitted during this year. It also shows the year in which magnet time was received. TBD stands for To Be Determined, indicating it has not yet been allotted magnet time.
Users, Requests & Operations

Note: A user is an individual or a member of a research group that is allocated magnet time. The user does not have to be “on site” for the experiment. A researcher who sends samples for analysis; a scientist who uses new lab technologies to conduct experiments remotely; or a PI who sends students to the Magnet Lab, are all considered users. All user numbers reflect distinct individuals, i.e. if a user has multiple proposals (different scientific thrusts) or is allocated magnet time more than once during the year, he/she is counted only once.
TABLE 1

High B/T Facility: User Demographics

<table>
<thead>
<tr>
<th>Users</th>
<th>Female</th>
<th>Minority</th>
<th>Users Present</th>
<th>Users Operating Remotely</th>
<th>Users Sending Sample</th>
<th>Off-Site Collaborators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students², U.S.</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students², non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24</td>
<td>3</td>
<td>2</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1 Minority status includes American Indian, Alaska Native, Black or African American, Hispanic, Native Hawaiian or other Pacific Islander.

2 Minority status excludes Asian and White-Not of Hispanic Origin.

3 "Students" generally refers to graduate students, but may include a few undergraduate students.

4 "Users Present" includes users physically present in the MagLab user facility during the experiment AND any MagLab-Affiliated or Local users on the experiment.

5 "Users Operating Remotely" refers to users who operate the magnet system from a remote location. Remote operations are not currently available in all facilities.

6 "Users Sending Sample" refers to users who send the sample to the facility and the experiment is conducted by in-house user support personnel.

7 Users at UF, FSU, and LANL cannot be "sample senders" for facilities located on their campuses.

8 "Off-Site Collaborators" are scientific or technical participants on the experiment; who will not be present, sending sample, or operating the magnet system remotely; and who are not located on the campus of that facility (i.e., they are off-site).

9 The total of Users Present + Users Operating Remotely + Users Sending Sample + and Off-Site Collaborators will equal the total number of users.

TABLE 2

High B/T Facility: User Affiliations

<table>
<thead>
<tr>
<th>Users</th>
<th>NHMFL Affiliated Users</th>
<th>Local Users</th>
<th>University Users</th>
<th>Industry Users</th>
<th>National Lab Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>11</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24</td>
<td>6</td>
<td>7</td>
<td>17</td>
<td>0</td>
</tr>
</tbody>
</table>

1 NHMFL-Affiliated users are defined as anyone in the lab’s personnel system (i.e. on our Web site/directory), even if they travel to another site.

Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site. The sum of NHMFL-Affiliated and Local users equals what was formerly referred to as "Internal Investigators".

Note for Annual Reporting: Due to programming limitations and the dynamic nature of information in this system, Local Users may include a few NHMFL-Affiliated users who left during the year and whose records have not yet been updated.

2 In addition to external users, all users with primary affiliations at FSU, UF, or FAMU are reported in this category, even if they are also NHMFL associates.

3 In addition to external users, users with primary affiliations at NHMFL/LANL are reported in this category.

4 The total of university, industry, and national lab users will equal the total number of users.
Due to operational differences, experimental requests for magnet time are measured differently among facilities. A request for NMR magnet time is measured in the number of days requested. A request for DC Field magnet time is measured in weeks. In the PFF, High B/T, EMR, and ICR facilities, the number of requests is equal to the number of experiments. For any given year, the time (or requests) granted and the time (or requests) declined may not equal the total number of requests. This is because (1) magnet time may be granted to experiments submitted in a prior year and/or (2) in NMR and DC Field facilities, the days or weeks granted may be more (as in the case of a user getting exceptional results) or less than what was requested due to operational limitations.

TABLE 3
High B/T Facility: Users by Discipline

<table>
<thead>
<tr>
<th></th>
<th>Users</th>
<th>Condensed Matter Physics</th>
<th>Chemistry, Geochemistry</th>
<th>Engineering</th>
<th>Magnets, Matls., Testing, Instruments</th>
<th>Biology, Biochemistry, Biophysics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>11</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24</td>
<td>21</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE 4
High B/T Facility: Experimental Requests\(^1\) for Magnet Time

<table>
<thead>
<tr>
<th>Experimental Requests</th>
<th>Experimental Requests Granted</th>
<th>Experimental Requests Declined</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8 (61.54%)</td>
<td>5 (38.46%)</td>
</tr>
</tbody>
</table>

\(^1\) Due to operational differences, experimental requests for magnet time are measured differently among facilities. A request for NMR magnet time is measured in the number of days requested. A request for DC Field magnet time is measured in weeks. In the PFF, High B/T, EMR, and ICR facilities, the number of requests is equal to the number of experiments. For any given year, the time (or requests) granted and the time (or requests) declined may not equal the total number of requests. This is because (1) magnet time may be granted to experiments submitted in a prior year and/or (2) in NMR and DC Field facilities, the days or weeks granted may be more (as in the case of a user getting exceptional results) or less than what was requested due to operational limitations.
TABLE 5

High B/T Facility: Research Proposals¹ Profile with Magnet Time

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Proposals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensed Matter Physics</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry, Geochemistry</td>
<td>0</td>
</tr>
<tr>
<td>Engineering</td>
<td>0</td>
</tr>
<tr>
<td>Magnets, Materials, Testing, Instruments</td>
<td>0</td>
</tr>
<tr>
<td>Biology, Biochemistry, Biophysics</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4</td>
</tr>
</tbody>
</table>

Number of Proposals

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Proposals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minority</td>
<td>0</td>
</tr>
<tr>
<td>Female</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

1. A “proposal” may have associated with it a single experiment or a group of closely related experiments. A PI may have more than one proposal.
2. The number of proposals satisfying one of the following two conditions: (a) the PI is a minority OR (b) the PI is a non-minority working at a minority-serving college or university AND the proposal includes minority participants.
3. The number of proposals satisfying one of the following two conditions: (a) the PI is a female OR (b) the PI is a male working at a college or university for women AND the proposal includes female participants.

TABLE 6

High B/T Facility: Operations Statistics Number of Magnet Days¹

<table>
<thead>
<tr>
<th>Category</th>
<th>Total Days Allocated /User Affiliated</th>
<th>Percentage Allocated /User Affiliated</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL-Affiliated<sup>2</sup></td>
<td>0.00</td>
<td>0.00%</td>
</tr>
<tr>
<td>Local<sup>2</sup></td>
<td>812.00</td>
<td>57.96%</td>
</tr>
<tr>
<td>U.S. University</td>
<td>392.00</td>
<td>27.98%</td>
</tr>
<tr>
<td>U.S. Govt. Lab.</td>
<td>140.00</td>
<td>9.99%</td>
</tr>
<tr>
<td>U.S. Industry</td>
<td>0.00</td>
<td>0.00%</td>
</tr>
<tr>
<td>Non-U.S.</td>
<td>0.00</td>
<td>0.00%</td>
</tr>
<tr>
<td>Test, Calibration, Set-up, Maintenance</td>
<td>57.00</td>
<td>4.07%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1401.00</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Notes:

1. User Units are defined as magnet days. For the High B/T Facility, one magnet day is defined 24 hours in the superconducting magnets.
2. NHMFL-Affiliated users are defined as anyone in the lab’s personnel system (i.e. on our Web site/directory), even if they travel to another site.
 - Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site.
 - The sum of NHMFL-Affiliated and Local usage equals what was formerly referred to as usage by “Internal Investigators.”
TABLE 7

High B/T Facility: Operations by Discipline

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL-Affiliated2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Local2</td>
<td>812.00</td>
<td>812.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>U.S. University</td>
<td>392.00</td>
<td>392.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>U.S. Govt. Lab.</td>
<td>140.00</td>
<td>140.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>U.S. Industry</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Non-U.S.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Test, Calibration, Set-up, Maintenance</td>
<td>57.00</td>
<td>57.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1401.00</td>
<td>1401.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

1 User Units are defined as magnet days. For the High B/T Facility, one magnet day is defined 24 hours in the superconducting magnets.

2 NHMFL-Affiliated users are defined as anyone in the lab’s personnel system (i.e. on our Web site/directory), even if they travel to another site. Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site. The sum of NHMFL-Affiliated and Local usage equals what was formerly referred to as usage by “Internal Investigators.”

TABLE 8

High B/T Facility: New User PIs1 (1)

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Proposal</th>
<th>Year of Magnet Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun, Xuefeng</td>
<td>Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China</td>
<td>P01895</td>
<td>2012</td>
</tr>
</tbody>
</table>

1 This table lists users serving as a principal investigator for the first time, and whose proposal was submitted during this year. It also shows the year in which magnet time was received. TBD stands for To Be Determined, indicating it has not yet been allotted magnet time.
2011 USER FACILITY STATISTICS

NMR/MRI Facility at FSU

Users, Requests & Operations

Note: A user is an individual or a member of a research group that is allocated magnet time. The user does not have to be “on site” for the experiment. A researcher who sends samples for analysis; a scientist who uses new lab technologies to conduct experiments remotely; or a PI who sends students to the Magnet Lab, are all considered users. All user numbers reflect distinct individuals, i.e. if a user has multiple proposals (different scientific thrusts) or is allocated magnet time more than once during the year, he/she is counted only once.
TABLE 1

NMR Facility: User Demographics

<table>
<thead>
<tr>
<th>Users</th>
<th>Female</th>
<th>Minority</th>
<th>Users Present</th>
<th>Users Operating Remotely</th>
<th>Users Sending Sample</th>
<th>Off-Site Collaborators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>79</td>
<td>12</td>
<td>4</td>
<td>46</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>22</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>24</td>
<td>3</td>
<td>1</td>
<td>18</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>52</td>
<td>19</td>
<td>4</td>
<td>48</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>196</td>
<td>40</td>
<td>11</td>
<td>140</td>
<td>7</td>
<td>25</td>
</tr>
</tbody>
</table>

1. Minority status includes American Indian, Alaska Native, Black or African American, Hispanic, Native Hawaiian or other Pacific Islander.
3. “Users Present” includes users physically present in the MagLab user facility during the experiment AND any MagLab-Affiliated or Local users on the experiment.
4. “Users Operating Remotely” refers to users who operate the magnet system from a remote location. Remote operations are not currently available in all facilities.
5. “Users Sending Sample” refers to users who send the sample to the facility and the experiment is conducted by in-house user support personnel. Users at UF, FSU, and LANL cannot be “sample senders” for facilities located on their campuses.
6. “Off-Site Collaborators” are scientific or technical participants on the experiment; who will not be present, sending sample, or operating the magnet system remotely; and who are not located on the campus of that facility (i.e., they are off-site).
7. The total of Users Present + Users Operating Remotely + Users Sending Sample + and Off-Site Collaborators will equal the total number of users.

TABLE 2

NMR Facility: User Affiliations

<table>
<thead>
<tr>
<th>Users</th>
<th>NHMFL Affiliated Users</th>
<th>Local Users</th>
<th>University Users</th>
<th>Industry Users</th>
<th>National Lab Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>79</td>
<td>20</td>
<td>12</td>
<td>74</td>
<td>2</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>22</td>
<td>1</td>
<td>0</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>24</td>
<td>7</td>
<td>9</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>52</td>
<td>20</td>
<td>10</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>196</td>
<td>54</td>
<td>34</td>
<td>186</td>
<td>6</td>
</tr>
</tbody>
</table>

1. NHMFL-Affiliated users are defined as anyone in the lab’s personnel system [i.e. on our Web site/directory], even if they travel to another site.
2. Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites [i.e. researchers at FSU, UF, FAMU, or LANL], even if they travel to another site. The sum of NHMFL-Affiliated and Local users equals what was formerly referred to as “Internal Investigators”. Note for Annual Reporting: Due to programming limitations and the dynamic nature of information in this system, Local Users may include a few NHMFL-Affiliated users who left during the year and whose records have not yet been updated.
3. In addition to external users, all users with primary affiliations at FSU, UF, or FAMU are reported in this category, even if they are also NHMFL associates.
4. The total of university, industry, and national lab users will equal the total number of users.
APPENDIX A: 2011 USER FACILITY STATISTICS

TABLE 3
NMR Facility: Users by Discipline

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Users</th>
<th>Condensed Matter Physics</th>
<th>Chemistry, Geochemistry</th>
<th>Engineering</th>
<th>Magnets, Matls., Testing, Instruments</th>
<th>Biology, Biochemistry, Biophysics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>79</td>
<td>3</td>
<td>12</td>
<td>11</td>
<td>2</td>
<td>51</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>22</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>24</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>52</td>
<td>1</td>
<td>5</td>
<td>14</td>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>196</td>
<td>6</td>
<td>35</td>
<td>32</td>
<td>6</td>
<td>117</td>
</tr>
</tbody>
</table>

TABLE 4
NMR Facility: Experimental Requests\(^1\) for Magnet Time

<table>
<thead>
<tr>
<th></th>
<th>Days Requested</th>
<th>Days Granted</th>
<th>Days Declined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3346</td>
<td>2927 (71.20%)</td>
<td>1184 (28.80%)</td>
</tr>
</tbody>
</table>

\(^1\) Due to operational differences, experimental requests for magnet time are measured differently among facilities. A request for NMR magnet time is measured in the number of days requested. A request for DC Field magnet time is measured in weeks. In the PFF, High B/T, EMR, and ICR facilities, the number of requests is equal to the number of experiments. For any given year, the time (or requests) granted and the time (or requests) declined may not equal the total number of requests. This is because (1) magnet time may be granted to experiments submitted in a prior year and/or (2) in NMR and DC Field facilities, the days or weeks granted may be more (as in the case of a user getting exceptional results) or less than what was requested due to operational limitations.
APPENDIX A: 2011 USER FACILITY STATISTICS

TABLE 5

NMR Facility: Research Proposals with Magnet Time

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Proposals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensed Matter Physics</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry, Geochemistry</td>
<td>21</td>
</tr>
<tr>
<td>Engineering</td>
<td>9</td>
</tr>
<tr>
<td>Magnets, Materials, Testing, Instruments</td>
<td>6</td>
</tr>
<tr>
<td>Biology, Biochemistry, Biophysics</td>
<td>50</td>
</tr>
<tr>
<td>TOTAL</td>
<td>89</td>
</tr>
</tbody>
</table>

1 A “proposal” may have associated with it a single experiment or a group of closely related experiments. A PI may have more than one proposal.
2 The number of proposals satisfying one of the following two conditions: (a) the PI is a minority OR (b) the PI is a non-minority working at a minority-serving college or university AND the proposal includes minority participants.
3 The number of proposals satisfying one of the following two conditions: (a) the PI is a female OR (b) the PI is a male working at a college or university for women AND the proposal includes female participants.

TABLE 6

NMR Facility: Operations Statistics

<table>
<thead>
<tr>
<th>Category</th>
<th>900</th>
<th>830</th>
<th>800</th>
<th>720</th>
<th>600</th>
<th>600 WB</th>
<th>600 WB2</th>
<th>500</th>
<th>500 E</th>
<th>Total Days Allocated/User Affiliated</th>
<th>Percentage Allocated/User Affiliated</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL-Affiliated</td>
<td>126.00</td>
<td>136.00</td>
<td>361.00</td>
<td>3.00</td>
<td>14.00</td>
<td>23.00</td>
<td>31.00</td>
<td>338.00</td>
<td>178.00</td>
<td>1210.00</td>
<td>41.34%</td>
</tr>
<tr>
<td>Local</td>
<td>108.00</td>
<td>0.00</td>
<td>0.00</td>
<td>50.00</td>
<td>0.00</td>
<td>243.00</td>
<td>213.00</td>
<td>0.00</td>
<td>32.00</td>
<td>696.00</td>
<td>23.78%</td>
</tr>
<tr>
<td>U.S. University</td>
<td>97.00</td>
<td>121.00</td>
<td>0.00</td>
<td>229.00</td>
<td>311.00</td>
<td>45.00</td>
<td>76.00</td>
<td>0.00</td>
<td>0.00</td>
<td>879.00</td>
<td>30.03%</td>
</tr>
<tr>
<td>U.S. Govt. Lab.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.00</td>
<td>0.07%</td>
</tr>
<tr>
<td>U.S. Industry</td>
<td>0.00</td>
<td>0.00%</td>
</tr>
<tr>
<td>Non-U.S.</td>
<td>29.00</td>
<td>56.00</td>
<td>0.00</td>
<td>9.00</td>
<td>9.00</td>
<td>0.00</td>
<td>37.00</td>
<td>0.00</td>
<td>0.00</td>
<td>140.00</td>
<td>4.78%</td>
</tr>
<tr>
<td>Test, Calibration, Set-up, Maintenance</td>
<td>0.00</td>
<td>0.00%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>360.00</td>
<td>313.00</td>
<td>361.00</td>
<td>293.00</td>
<td>334.00</td>
<td>361.00</td>
<td>357.00</td>
<td>338.00</td>
<td>210.00</td>
<td>2927.00</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

1 User Units are defined as magnet days. For the NMR Facility in Tallahassee, one magnet day is 24 hours in the superconducting magnets.
2 NHMFL-Affiliated users are defined as anyone in the lab’s personnel system (i.e. on our Web site/directory), even if they travel to another site. Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site.
3 The sum of NHMFL-Affiliated and Local usage equals what was formerly referred to as usage by “Internal Investigators.”
TABLE 7

NMR Facility: Operations by Discipline

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL-Affiliated 2</td>
<td>1210.00</td>
<td>0.00</td>
<td>295.00</td>
<td>344.00</td>
<td>74.00</td>
<td>497.00</td>
</tr>
<tr>
<td>Local 2</td>
<td>696.00</td>
<td>0.00</td>
<td>37.00</td>
<td>0.00</td>
<td>0.00</td>
<td>659.00</td>
</tr>
<tr>
<td>U.S. University</td>
<td>879.00</td>
<td>32.00</td>
<td>72.00</td>
<td>16.00</td>
<td>18.00</td>
<td>741.00</td>
</tr>
<tr>
<td>U.S. Govt. Lab.</td>
<td>2.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.00</td>
</tr>
<tr>
<td>U.S. Industry</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Non-U.S.</td>
<td>140.00</td>
<td>0.00</td>
<td>87.00</td>
<td>0.00</td>
<td>16.00</td>
<td>18.00</td>
</tr>
<tr>
<td>Test, Calibration, Set-up, Maintenance</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2927.00</td>
<td>32.00</td>
<td>491.00</td>
<td>360.00</td>
<td>110.00</td>
<td>1934.00</td>
</tr>
</tbody>
</table>

1 User Units are defined as magnet days. For the NMR Facility in Tallahassee, one magnet day is 24 hours in the superconducting magnets.
2 NHMFL-Affiliated users are defined as anyone in the lab’s personnel system (i.e. on our Web site/directory), even if they travel to another site.
Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site.
The sum of NHMFL-Affiliated and Local usage equals what was formerly referred to as usage by “Internal Investigators”

TABLE 8

NMR Facility: New User PIs 1 (6)

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Proposal</th>
<th>Year of Magnet Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kojetin, Douglas</td>
<td>The Scripps Research Institute - Scripps Florida</td>
<td>P01653</td>
<td>2011</td>
</tr>
<tr>
<td>Zhou, Yi</td>
<td>Florida State University</td>
<td>P01697</td>
<td>2011</td>
</tr>
<tr>
<td>Saam, Brian</td>
<td>University of Utah</td>
<td>P01755</td>
<td>2011</td>
</tr>
<tr>
<td>Gimi, Barjor</td>
<td>Dartmouth Medical School</td>
<td>P01776</td>
<td>2011</td>
</tr>
<tr>
<td>Ren, Yuhao</td>
<td>Walker Cancer Research Institute</td>
<td>P01792</td>
<td>2011</td>
</tr>
<tr>
<td>Paravastu, Anant</td>
<td>FSU/FAMU College of Engineering</td>
<td>P01874</td>
<td>2011</td>
</tr>
</tbody>
</table>

1 This table lists users serving as a principal investigator for the first time, and whose proposal was submitted during this year. It also shows the year in which magnet time was received. TBD stands for To Be Determined, indicating it has not yet been allotted magnet time.
Users, Requests & Operations

Note: A user is an individual or a member of a research group that is allocated magnet time. The user does not have to be “on site” for the experiment. A researcher who sends samples for analysis; a scientist who uses new lab technologies to conduct experiments remotely; or a PI who sends students to the Magnet Lab, are all considered users. All user numbers reflect distinct individuals, i.e. if a user has multiple proposals (different scientific thrusts) or is allocated magnet time more than once during the year, he/she is counted only once.
TABLE 1
AMRIS Facility: User Demographics

<table>
<thead>
<tr>
<th>Users</th>
<th>Female</th>
<th>Minority¹</th>
<th>Users Present²,⁷</th>
<th>Users Operating Remotely²,⁷</th>
<th>Users Sending Sample²,⁷</th>
<th>Off-Site Collaborators²,⁷</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>63</td>
<td>11</td>
<td>4</td>
<td>37</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>19</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Students², U.S.</td>
<td>33</td>
<td>6</td>
<td>2</td>
<td>20</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Students², non-U.S.</td>
<td>22</td>
<td>5</td>
<td>2</td>
<td>16</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>21</td>
<td>1</td>
<td>0</td>
<td>13</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>191</td>
<td>28</td>
<td>10</td>
<td>108</td>
<td>22</td>
<td>61</td>
</tr>
</tbody>
</table>

¹ Minority status includes American Indian, Alaska Native, Black or African American, Hispanic, Native Hawaiian or other Pacific Islander. Minority status excludes Asian and White-Not of Hispanic Origin.
² “Students” generally refers to graduate students, but may include a few undergraduate students.
³ “Users Present” includes users physically present in the MagLab user facility during the experiment AND any MagLab-Affiliated or Local users on the experiment. See Note at 7.
⁴ “Users Operating Remotely” refers to users who operate the magnet system from a remote location. Remote operations are not currently available in all facilities.
⁵ “Users Sending Sample” refers to users who send the sample to the facility and the experiment is conducted by in-house user support personnel. Users at UF, FSU, and LANL cannot be “sample senders” for facilities located on their campuses.
⁶ “Off-Site Collaborators” are scientific or technical participants on the experiment; who will not be present, sending sample, or operating the magnet system remotely; and who are not located on the campus of that facility (i.e., they are off-site). See Note at 7.
⁷ The total of Users Present + Users Operating Remotely + Users Sending Sample + and Off-Site Collaborators will equal the total number of users.

Note: Data supporting the revised definitions for Users Present and Off-Site Collaborators was not captured in 2011, so it is reported as in previous years.

TABLE 2
AMRIS Facility: User Affiliations

<table>
<thead>
<tr>
<th>Users</th>
<th>NHMFL Affiliated Users¹</th>
<th>Local Users¹</th>
<th>University Users²,⁴</th>
<th>Industry Users ⁴</th>
<th>National Lab Users³,⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>63</td>
<td>10</td>
<td>23</td>
<td>58</td>
<td>0</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>19</td>
<td>2</td>
<td>15</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>12</td>
<td>0</td>
<td>6</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>12</td>
<td>0</td>
<td>8</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>33</td>
<td>0</td>
<td>21</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>22</td>
<td>0</td>
<td>14</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>21</td>
<td>4</td>
<td>10</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>191</td>
<td>16</td>
<td>100</td>
<td>175</td>
<td>6</td>
</tr>
</tbody>
</table>

¹ NHMFL-Affiliated users are defined as anyone in the lab’s personnel system [i.e. on our Web site/directory], even if they travel to another site. Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site. The sum of NHMFL-Affiliated and Local users equals what was formerly referred to as “Internal Investigators”.
² Note for Annual Reporting: Due to programming limitations and the dynamic nature of information in this system, Local Users may include a few NHMFL-Affiliated users who left during the year and whose records have not yet been updated.
³ In addition to external users, all users with primary affiliations at FSU, UF, or FAMU are reported in this category, even if they are also NHMFL associates.
⁴ In addition to external users, users with primary affiliations at NHMFL/LANL are reported in this category.
⁵ The total of university, industry, and national lab users will equal the total number of users.
TABLE 3
AMRIS Facility: Users by Discipline

<table>
<thead>
<tr>
<th>Users</th>
<th>Condensed Matter Physics</th>
<th>Chemistry, Geochemistry</th>
<th>Engineering</th>
<th>Magnets, Matsls., Testing, Instruments</th>
<th>Biology, Biochemistry, Biophysics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>63</td>
<td>0</td>
<td>19</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>19</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>33</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>22</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>21</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>191</td>
<td>0</td>
<td>58</td>
<td>20</td>
<td>4</td>
</tr>
</tbody>
</table>

TABLE 4
AMRIS Facility: Experimental Requests\(^1\) for Magnet Time

<table>
<thead>
<tr>
<th>Days Requested</th>
<th>Days Granted</th>
<th>Days Declined</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1800</td>
<td>1597</td>
<td>>200</td>
</tr>
</tbody>
</table>

\(^1\) Due to operational differences, experimental requests for magnet time are measured differently among facilities. A request for NMR magnet time is measured in the number of days requested. A request for DC Field magnet time is measured in weeks. In the PFF, High B/T, EMR, and ICR facilities, the number of requests is equal to the number of experiments. For any given year, the time (or requests) granted and the time (or requests) declined may not equal the total number of requests. This is because (1) magnet time may be granted to experiments submitted in a prior year and/or (2) in NMR and DC Field facilities, the days or weeks granted may be more (as in the case of a user getting exceptional results) or less than what was requested due to operational limitations.

TABLE 5
AMRIS Facility: Research Proposals\(^1\) Profile with Magnet Time

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Proposals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensed Matter Physics</td>
<td>0</td>
</tr>
<tr>
<td>Chemistry, Geochemistry</td>
<td>17</td>
</tr>
<tr>
<td>Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Magnets, Materials, Testing, Instruments</td>
<td>0</td>
</tr>
<tr>
<td>Biology, Biochemistry, Biophysics</td>
<td>72</td>
</tr>
<tr>
<td>TOTAL</td>
<td>93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Proposals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minority(^2)</td>
<td>4</td>
</tr>
<tr>
<td>Female(^3)</td>
<td>17</td>
</tr>
</tbody>
</table>

\(^1\) A “proposal” may have associated with it a single experiment or a group of closely related experiments. A PI may have more than one proposal.

\(^2\) The number of proposals satisfying one of the following two conditions: (a) the PI is a minority OR (b) the PI is a non-minority working at a minority-serving college or university AND the proposal includes minority participants.

\(^3\) The number of proposals satisfying one of the following two conditions: (a) the PI is a female OR (b) the PI is a male working at a college or university for women AND the proposal includes female participants.
<table>
<thead>
<tr>
<th></th>
<th>500 MHz NMR</th>
<th>600 MHz NMR/ MRI</th>
<th>600 MHz cryo</th>
<th>600 MHz cryo2</th>
<th>750 MHz wb</th>
<th>4.7 T / 33 cm</th>
<th>11.1 T / 40 cm</th>
<th>3 T whole body</th>
<th>Total Days Allocated / User Affiliated</th>
<th>Percentage Allocated / User Affiliated</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL-Affiliated</td>
<td>42</td>
<td>187</td>
<td>45</td>
<td>5</td>
<td>149</td>
<td>103</td>
<td>102</td>
<td>36</td>
<td>669</td>
<td>35%</td>
</tr>
<tr>
<td>Local</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>51</td>
<td>7</td>
<td>87</td>
<td>172</td>
<td>9%</td>
</tr>
<tr>
<td>U.S. University</td>
<td>5</td>
<td>20</td>
<td>53</td>
<td>0</td>
<td>105</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>198</td>
<td>10%</td>
</tr>
<tr>
<td>U.S. Govt. Lab.</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>.7%</td>
</tr>
<tr>
<td>U.S. Industry</td>
<td>0</td>
</tr>
<tr>
<td>Non-U.S.</td>
<td>121</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>137</td>
<td>7%</td>
</tr>
<tr>
<td>Development</td>
<td>37</td>
<td>73</td>
<td>66</td>
<td>121</td>
<td>63</td>
<td>21</td>
<td>54</td>
<td>2</td>
<td>437</td>
<td>23%</td>
</tr>
<tr>
<td>Test, Calibration,</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>16</td>
<td>34</td>
<td>24</td>
<td>77</td>
<td>40</td>
<td>293</td>
<td>15%</td>
</tr>
<tr>
<td>Set-up, Maintenance</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>249</td>
<td>326</td>
<td>219</td>
<td>151</td>
<td>351</td>
<td>205</td>
<td>252</td>
<td>167</td>
<td>1920</td>
<td>100%</td>
</tr>
</tbody>
</table>

1 User Units are defined as magnet days. Magnet-day definitions for AMRIS instruments: Verticals (500, 600s, & 750 MHz), 1 magnet day = 24 hours (7 days/week). Horizontals (4.7, 11.1, and 3T), 1 magnet day = 8 hours (5 days/week). This accounts for the difficulty in running animal or human studies overnight. With additional staffing, the 11.1 T system went to an 8 hour / 7 day week schedule in 2010. There is an annual 7 day holiday shutdown at UF so total days are based on a 51 week calendar. Magnet days were calculated by adding the total number of real hours used for each instrument and dividing by 24 (vertical) or 8 (horizontal).

Note: Due to the nature of the 4.7 T, 11 T and 3 T studies, almost all studies with external users were collaborative with UF investigators.

2 NHMFL-Affiliated users are defined as anyone in the lab’s personnel system (i.e. on our Web site/directory), even if they travel to another site. Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site. The sum of NHMFL-Affiliated and Local usage equals what was formerly referred to as usage by “Internal Investigators”.

Note: All of the use in this category was paid by individual investigator grants and not the NHMFL.

3 Development was used for several purposes, primarily for establishing new capabilities such as building and testing coils, implementing new pulse sequences, and developing new protocols. For merging with other NHMFL user tables, Development data will be added to Test, Calibration, Set-up, Maintenance.

4 Note that each instrument has approximately the same number of hours for maintenance/testing and days are different due to definitions of magnet days on the different instruments.
TABLE 7

AMRIS Facility: Operations by Discipline

<table>
<thead>
<tr>
<th>Total Days<sup>1</sup></th>
<th>Condensed Matter Physics</th>
<th>Chemistry, Geochem.</th>
<th>Engineering</th>
<th>Magnets, Matls, Testing, Instruments</th>
<th>Biology, Biochemistry, Biophysics</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL-Affiliated<sup>2</sup></td>
<td>669</td>
<td>0</td>
<td>169</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>Local<sup>3</sup></td>
<td>172</td>
<td>0</td>
<td>72</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>U.S. University</td>
<td>198</td>
<td>0</td>
<td>98</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>U.S. Govt. Lab.</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U.S. Industry</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Non-U.S.</td>
<td>137</td>
<td>0</td>
<td>37</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Development</td>
<td>437</td>
<td>0</td>
<td>37</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Test, Calibration, Set-up, Maintenance</td>
<td>293</td>
<td>0</td>
<td>0</td>
<td>93</td>
<td>100</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1920</td>
<td>0</td>
<td>427</td>
<td>393</td>
<td>300</td>
</tr>
</tbody>
</table>

¹ User Units are defined as magnet days. Magnet-day definitions for AMRIS instruments: Verticals (500, 600s, & 750 MHz), 1 magnet day = 24 hours (7 days/week). Horizontals (4.7, 11.1, and 3T), 1 magnet day = 8 hours (5 days/week). This accounts for the difficulty in running animal or human studies overnight. With additional staffing, the 11.1 T system went to an 8 hour/ 7 day a week schedule in 2010. There is an annual 7 day holiday shutdown at UF so total days are based on a 51 week calendar. Magnet days were calculated by adding the total number of real hours used for each instrument and dividing by 24 (vertical) or 8 (horizontal).

² NHMFL-Affiliated users are defined as anyone in the lab's personnel system [i.e. on our Web site/directory], even if they travel to another site. Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site.

³ The sum of NHMFL-Affiliated and Local usage equals what was formerly referred to as usage by “Internal Investigators”.

Note: Due to the nature of the 4.7 T, 11 T and 3 T studies, almost all studies with external users were collaborative with UF investigators.

Note: All of the use in this category was paid by individual investigator grants and not the NHMFL.

Note: Development was used for several purposes, primarily for establishing new capabilities such as building and testing coils, implementing new pulse sequences, and developing new protocols. For merging with other NHMFL user tables, Development data will be added to Test, Calibration, Set-up, Maintenance.

Note: Development was used for several purposes, primarily for establishing new capabilities such as building and testing coils, implementing new pulse sequences, and developing new protocols. For merging with other NHMFL user tables, Development data will be added to Test, Calibration, Set-up, Maintenance.

Note: Development was used for several purposes, primarily for establishing new capabilities such as building and testing coils, implementing new pulse sequences, and developing new protocols. For merging with other NHMFL user tables, Development data will be added to Test, Calibration, Set-up, Maintenance.

TABLE 8

AMRIS Facility: New User PIs¹ (7)

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Proposal</th>
<th>Year of Magnet Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simon, John</td>
<td>Duke University</td>
<td>P01647</td>
<td>2011</td>
</tr>
<tr>
<td>Dotson, Vonetta</td>
<td>University of Florida</td>
<td>P01507</td>
<td>2011</td>
</tr>
<tr>
<td>Priestap, Horacio</td>
<td>Florida International University</td>
<td>P01764</td>
<td>2011</td>
</tr>
<tr>
<td>Heldermon, Coy</td>
<td>University of Florida</td>
<td>P01777</td>
<td>2011</td>
</tr>
<tr>
<td>Wright, Christine</td>
<td>University of Virginia</td>
<td>P01857</td>
<td>2011</td>
</tr>
<tr>
<td>Nader, Helena</td>
<td>Federal University of Sao Paulo</td>
<td>P01795</td>
<td>2011</td>
</tr>
<tr>
<td>Jorgensen, Charlotte</td>
<td>University of Southern Denmark</td>
<td>P01902</td>
<td>2011</td>
</tr>
</tbody>
</table>

¹ This table lists users serving as a principal investigator for the first time, and whose proposal was submitted during this year. It also shows the year in which magnet time was received. TBD stands for To Be Determined, indicating it has not yet been allotted magnet time.
2011 USER FACILITY STATISTICS

EMR Facility

Users, Requests & Operations

Note: A user is an individual or a member of a research group that is allocated magnet time. The user does not have to be “on site” for the experiment. A researcher who sends samples for analysis; a scientist who uses new lab technologies to conduct experiments remotely; or a PI who sends students to the Magnet Lab, are all considered users. All user numbers reflect distinct individuals, i.e. if a user has multiple proposals (different scientific thrusts) or is allocated magnet time more than once during the year, he/she is counted only once.
APPENDIX A: 2011 USER FACILITY STATISTICS

TABLE 1
EMR Facility: User Demographics

<table>
<thead>
<tr>
<th>Users</th>
<th>Female</th>
<th>Minority</th>
<th>Users Present</th>
<th>Users Operating Remotely</th>
<th>Users Sending Sample</th>
<th>Off-Site Collaborators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>34</td>
<td>3</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>33</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students², U.S.</td>
<td>21</td>
<td>4</td>
<td>2</td>
<td>15</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Students², non-U.S.</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>113</td>
<td>17</td>
<td>8</td>
<td>47</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

1 Minority status includes American Indian, Alaska Native, Black or African American, Hispanic, Native Hawaiian or other Pacific Islander.
2 Minority status excludes Asian and White-Not of Hispanic Origin.
3 “Students” generally refers to graduate students, but may include a few undergraduate students.
4 “Users Present” includes users physically present in the MagLab user facility during the experiment AND any MagLab-Affiliated or Local users on the experiment.
5 “Users Operating Remotely” refers to users who operate the magnet system from a remote location. Remote operations are not currently available in all facilities.
6 “Users Sending Sample” refers to users who send the sample to the facility and the experiment is conducted by in-house user support personnel. Users at UF, FSU, and LANL cannot be “sample senders” for facilities located on their campuses.
7 “Off-Site Collaborators” are scientific or technical participants on the experiment; who will not be present, sending sample, or operating the magnet system remotely; and who are not located on the campus of that facility (i.e., they are off-site).
8 The total of Users Present + Users Operating Remotely + Users Sending Sample + and Off-Site Collaborators will equal the total number of users.

TABLE 2
EMR Facility: User Affiliations

<table>
<thead>
<tr>
<th>Users</th>
<th>NHMFL Affiliated Users</th>
<th>Local Users</th>
<th>University Users</th>
<th>Industry Users</th>
<th>National Lab Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>34</td>
<td>9</td>
<td>2</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>21</td>
<td>3</td>
<td>5</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>113</td>
<td>14</td>
<td>8</td>
<td>106</td>
<td>0</td>
</tr>
</tbody>
</table>

1 NHMFL-Affiliated users are defined as anyone in the lab’s personnel system [i.e. on our Web site/directory], even if they travel to another site.
2 Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e., researchers at FSU, UF, FAMU, or LANL), even if they travel to another site.
3 The sum of NHMFL-Affiliated and Local users equals what was formerly referred to as “Internal Investigators.”
4 Note for Annual Reporting: Due to programming limitations and the dynamic nature of information in this system, Local Users may include a few NHMFL-Affiliated users who left during the year and whose records have not yet been updated.
5 In addition to external users, all users with primary affiliations at FSU, UF, or FAMU are reported in this category, even if they are also NHMFL associates.
6 In addition to external users, users with primary affiliations at NHMFL/LANL are reported in this category.
7 The total of university, industry, and national lab users will equal the total number of users.
Table 3

EMR Facility: Users by Discipline

<table>
<thead>
<tr>
<th>Disciplines</th>
<th>Users</th>
<th>Condensed Matter Physics</th>
<th>Chemistry, Geochemistry</th>
<th>Engineering</th>
<th>Magnets, Mats., Testing, Instruments</th>
<th>Biology, Biochemistry, Biophysics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>34</td>
<td>10</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>33</td>
<td>7</td>
<td>18</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>21</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>12</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>113</td>
<td>30</td>
<td>60</td>
<td>4</td>
<td>2</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 4

EMR Facility: Experimental Requests for Magnet Time

<table>
<thead>
<tr>
<th>Experimental Requests</th>
<th>Experimental Requests Granted</th>
<th>Experimental Requests Declined</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>42 (72.41%)</td>
<td>16 (27.59%)</td>
</tr>
</tbody>
</table>

1 Due to operational differences, experimental requests for magnet time are measured differently among facilities. A request for NMR magnet time is measured in the number of days requested. A request for DC Field magnet time is measured in weeks. In the PFF, High B/T, EMR, and ICR facilities, the number of requests is equal to the number of experiments. For any given year, the time (or requests) granted and the time (or requests) declined may not equal the total number of requests. This is because (1) magnet time may be granted to experiments submitted in a prior year and/or (2) in NMR and DC Field facilities, the days or weeks granted may be more (as in the case of a user getting exceptional results) or less than what was requested due to operational limitations.
TABLE 5

EMR Facility: Research Proposals¹ **Profile with Magnet Time**

<table>
<thead>
<tr>
<th></th>
<th>Number of Proposals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensed Matter Physics</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry, Geochemistry</td>
<td>26</td>
</tr>
<tr>
<td>Engineering</td>
<td>0</td>
</tr>
<tr>
<td>Magnets, Materials, Testing, Instruments</td>
<td>1</td>
</tr>
<tr>
<td>Biology, Biochemistry, Biophysics</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>40</td>
</tr>
</tbody>
</table>

Number of Proposals

<table>
<thead>
<tr>
<th></th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minority<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td>Female<sup>1</sup></td>
<td>5</td>
</tr>
</tbody>
</table>

¹ A “proposal” may have associated with it a single experiment or a group of closely related experiments. A PI may have more than one proposal.

² The number of proposals satisfying one of the following two conditions: (a) the PI is a minority OR (b) the PI is a non-minority working at a minority-serving college or university AND the proposal includes minority participants.

³ The number of proposals satisfying one of the following two conditions: (a) the PI is a female OR (b) the PI is a male working at a college or university for women AND the proposal includes female participants.

TABLE 6

EMR Facility: Operations Statistics

<table>
<thead>
<tr>
<th></th>
<th>17 T</th>
<th>12 T</th>
<th>Mossbauer</th>
<th>Total Days Allocated /User Affiliated</th>
<th>Percentage Allocated /User Affiliated</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL-Affiliated<sup>2</sup></td>
<td>7.00</td>
<td>0.00</td>
<td>5.00</td>
<td>12.00</td>
<td>2.47%</td>
</tr>
<tr>
<td>Local<sup>2</sup></td>
<td>38.00</td>
<td>10.00</td>
<td>13.00</td>
<td>61.00</td>
<td>12.58%</td>
</tr>
<tr>
<td>U.S. University</td>
<td>73.00</td>
<td>21.00</td>
<td>70.00</td>
<td>164.00</td>
<td>33.81%</td>
</tr>
<tr>
<td>U.S. Govt. Lab.</td>
<td>0.00</td>
<td>36.00</td>
<td>0.00</td>
<td>36.00</td>
<td>7.42%</td>
</tr>
<tr>
<td>U.S. Industry</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00%</td>
</tr>
<tr>
<td>Non-U.S.</td>
<td>93.00</td>
<td>81.00</td>
<td>38.00</td>
<td>212.00</td>
<td>43.71%</td>
</tr>
<tr>
<td>Test, Calibration, Set-up, Maintenance</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>211.00</td>
<td>148.00</td>
<td>126.00</td>
<td>485.00</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

¹ User Units are defined as magnet days. For the EMR Facility, one magnet day is defined as 24 hours in superconducting magnets.

² NHMFL-Affiliated users are defined as anyone in the lab’s personnel system [i.e. on our Web site/directory], even if they travel to another site.

Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites [i.e. researchers at FSU, UF, FAMU, or LANL], even if they travel to another site.

The sum of NHMFL-Affiliated and Local usage equals what was formerly referred to as usage by “Internal Investigators.”
Table 7
EMR Facility: Operations by Discipline

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL-Affiliated 2</td>
<td>12.00</td>
<td>2.00</td>
<td>10.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Local 2</td>
<td>61.00</td>
<td>0.00</td>
<td>25.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>U.S. University</td>
<td>164.00</td>
<td>17.00</td>
<td>87.00</td>
<td>0.00</td>
<td>8.00</td>
</tr>
<tr>
<td>U.S. Govt. Lab.</td>
<td>36.00</td>
<td>36.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>U.S. Industry</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Non-U.S.</td>
<td>212.00</td>
<td>101.00</td>
<td>111.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Test, Calibration, Set-up, Maintenance</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>485.00</td>
<td>156.00</td>
<td>233.00</td>
<td>0.00</td>
<td>8.00</td>
</tr>
</tbody>
</table>

1 User Units are defined as magnet days. For the EMR Facility, one magnet day is defined as 24 hours in superconducting magnets.

2 NHMFL-Affiliated users are defined as anyone in the lab's personnel system [i.e. on our Web site/directory], even if they travel to another site.

Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site.

The sum of NHMFL-Affiliated and Local usage equals what was formerly referred to as usage by “Internal Investigators.”

Table 8
EMR Facility: New User PIs 1 (13)

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Proposal</th>
<th>Year of Magnet Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lawes, Gavin</td>
<td>Wayne State University</td>
<td>P01634</td>
<td>2011</td>
</tr>
<tr>
<td>Latturner, Susan</td>
<td>Florida State University</td>
<td>P01638</td>
<td>2011</td>
</tr>
<tr>
<td>Sakiyama, Hiroshi</td>
<td>Yamagata University</td>
<td>P01642</td>
<td>2011</td>
</tr>
<tr>
<td>Colvin, Vicki</td>
<td>Rice University</td>
<td>P01664</td>
<td>2011</td>
</tr>
<tr>
<td>Rangachari, Vijay</td>
<td>University of Southern Mississippi</td>
<td>P01679</td>
<td>2011</td>
</tr>
<tr>
<td>Schenkel, Thomas</td>
<td>Lawrence Berkeley National Laboratory</td>
<td>P01745</td>
<td>2011</td>
</tr>
<tr>
<td>Aliaga-Alcalde, Nuria</td>
<td>ICREA & UB</td>
<td>P01817</td>
<td>2011</td>
</tr>
<tr>
<td>Moomaw, Ellen</td>
<td>Kennesaw State University</td>
<td>P01872</td>
<td>2011</td>
</tr>
<tr>
<td>Lysenko, Andry</td>
<td>Taras Shevchenko National University of Kyiv</td>
<td>P01893</td>
<td>2011</td>
</tr>
<tr>
<td>Steinbock, Oliver</td>
<td>Florida State University</td>
<td>P01963</td>
<td>TBD</td>
</tr>
<tr>
<td>Pajerowski, Daniel</td>
<td>National Institute of Standards and Technology</td>
<td>P01971</td>
<td>2011</td>
</tr>
<tr>
<td>Clérac, Rodolphe</td>
<td>Centre de Recherche Paul Pascal</td>
<td>P01977</td>
<td>2011</td>
</tr>
<tr>
<td>Holmes, Stephen</td>
<td>University of Missouri-St. Louis</td>
<td>P01979</td>
<td>2011</td>
</tr>
</tbody>
</table>

1 This table lists users serving as a principal investigator for the first time, and whose proposal was submitted during this year. It also shows the year in which magnet time was received. TBD stands for To Be Determined, indicating it has not yet been allotted magnet time.
Users, Requests & Operations

Note: A user is an individual or a member of a research group that is allocated magnet time. The user does not have to be “on site” for the experiment. A researcher who sends samples for analysis; a scientist who uses new lab technologies to conduct experiments remotely; or a PI who sends students to the Magnet Lab, are all considered users. All user numbers reflect distinct individuals, i.e. if a user has multiple proposals (different scientific thrusts) or is allocated magnet time more than once during the year, he/she is counted only once.
ICR Facility: User Demographics

<table>
<thead>
<tr>
<th>Users</th>
<th>Female</th>
<th>Minority</th>
<th>Users Present</th>
<th>Users Operating Remotely</th>
<th>Users Sending Sample</th>
<th>Off-Site Collaborators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>57</td>
<td>12</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>27</td>
<td>16</td>
<td>2</td>
<td>22</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>112</td>
<td>32</td>
<td>5</td>
<td>55</td>
<td>0</td>
<td>40</td>
</tr>
</tbody>
</table>

1 Minority status includes American Indian, Alaska Native, Black or African American, Hispanic, Native Hawaiian or other Pacific Islander.

Minority status excludes Asian and White-Not of Hispanic Origin

2 “Students” generally refers to graduate students, but may include a few undergraduate students.

3 “Users Present” includes users physically present in the MagLab user facility during the experiment AND any MagLab-Affiliated or Local users on the experiment.

4 “Users Operating Remotely” refers to users who operate the magnet system from a remote location. Remote operations are not currently available in all facilities.

5 “Users Sending Sample” refers to users who send the sample to the facility and the experiment is conducted by in-house user support personnel. Users at UF, FSU, and LANL cannot be “sample senders” for facilities located on their campuses.

6 “Off-Site Collaborators” are scientific or technical participants on the experiment; who will not be present, sending sample, or operating the magnet system remotely; and who are not located on the campus of that facility (i.e., they are off-site).

7 The total of Users Present + Users Operating Remotely + Users Sending Sample + and Off-Site Collaborators will equal the total number of users.

ICR Facility: User Affiliations

<table>
<thead>
<tr>
<th>Users</th>
<th>NHMFL Affiliated Users</th>
<th>Local Users</th>
<th>University Users</th>
<th>Industry Users</th>
<th>National Lab Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>57</td>
<td>9</td>
<td>8</td>
<td>44</td>
<td>9</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>12</td>
<td>6</td>
<td>3</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>27</td>
<td>6</td>
<td>9</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>112</td>
<td>22</td>
<td>20</td>
<td>93</td>
<td>10</td>
</tr>
</tbody>
</table>

1 NHMFL-Affiliated users are defined as anyone in the lab’s personnel system (i.e. on our Web site/directory), even if they travel to another site. Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site. The sum of NHMFL-Affiliated and Local users equals what was formerly referred to as “Internal Investigators”. Note for Annual Reporting: Due to programming limitations and the dynamic nature of information in this system, Local Users may include a few NHMFL-Affiliated users who left during the year and whose records have not yet been updated.

2 In addition to external users, all users with primary affiliations at FSU, UF, or FAMU are reported in this category, even if they are also NHMFL associates.

3 In addition to external users, users with primary affiliations at NHMFL/LANL are reported in this category.

4 The total of university, industry, and national lab users will equal the total number of users.
TABLE 3
ICR Facility: Users by Discipline

<table>
<thead>
<tr>
<th></th>
<th>Users</th>
<th>Condensed Matter Physics</th>
<th>Chemistry, Geochemistry</th>
<th>Engineering</th>
<th>Magnets, Mats., Testing, Instruments</th>
<th>Biology, Biochemistry, Biophysics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>57</td>
<td>0</td>
<td>32</td>
<td>1</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>12</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>12</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>27</td>
<td>0</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>112</td>
<td>0</td>
<td>67</td>
<td>7</td>
<td>3</td>
<td>35</td>
</tr>
</tbody>
</table>

TABLE 4
ICR Facility: Experimental Requests\(^1\) for Magnet Time

<table>
<thead>
<tr>
<th>Experimental Requests</th>
<th>Experimental Requests Granted</th>
<th>Experimental Requests Declined</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>138 (97.18%)</td>
<td>4 (2.82%)</td>
</tr>
</tbody>
</table>

\(^1\) Due to operational differences, experimental requests for magnet time are measured differently among facilities. A request for NMR magnet time is measured in the number of days requested. A request for DC Field magnet time is measured in weeks. In the PFF, High B/T, EMR, and ICR facilities, the number of requests is equal to the number of experiments. For any given year, the time (or requests) granted and the time (or requests) declined may not equal the total number of requests. This is because (1) magnet time may be granted to experiments submitted in a prior year and/or (2) in NMR and DC Field facilities, the days or weeks granted may be more (as in the case of a user getting exceptional results) or less than what was requested due to operational limitations.
TABLE 5
ICR Facility: Research Proposals

<table>
<thead>
<tr>
<th>Area</th>
<th>Number of Proposals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensed Matter Physics</td>
<td>0</td>
</tr>
<tr>
<td>Chemistry, Geochemistry</td>
<td>58</td>
</tr>
<tr>
<td>Engineering</td>
<td>0</td>
</tr>
<tr>
<td>Magnets, Materials, Testing, Instruments</td>
<td>10</td>
</tr>
<tr>
<td>Biology, Biochemistry, Biophysics</td>
<td>16</td>
</tr>
<tr>
<td>TOTAL</td>
<td>84</td>
</tr>
</tbody>
</table>

Table Notes:
1 A “proposal” may have associated with it a single experiment or a group of closely related experiments. A PI may have more than one proposal.
2 The number of proposals satisfying one of the following two conditions: (a) the PI is a minority OR (b) the PI is a non-minority working at a minority-serving college or university AND the proposal includes minority participants.
3 The number of proposals satisfying one of the following two conditions: (a) the PI is a female OR (b) the PI is a male working at a college or university for women AND the proposal includes female participants.

TABLE 6
ICR Facility: Operations Statistics

<table>
<thead>
<tr>
<th>Area</th>
<th>14.5 T Hybrid</th>
<th>9.4 T Passive</th>
<th>9.4 T Active</th>
<th>Total Days Allocated / User Affiliated</th>
<th>Percentage Allocated / User Affiliated</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL-Affiliated</td>
<td>56.00</td>
<td>178.00</td>
<td>38.00</td>
<td>272.00</td>
<td>31.37%</td>
</tr>
<tr>
<td>Local</td>
<td>50.00</td>
<td>73.00</td>
<td>138.00</td>
<td>261.00</td>
<td>30.10%</td>
</tr>
<tr>
<td>U.S. University</td>
<td>104.00</td>
<td>107.00</td>
<td>4.00</td>
<td>215.00</td>
<td>24.80%</td>
</tr>
<tr>
<td>U.S. Govt. Lab.</td>
<td>7.00</td>
<td>21.00</td>
<td>0.00</td>
<td>28.00</td>
<td>3.23%</td>
</tr>
<tr>
<td>U.S. Industry</td>
<td>3.00</td>
<td>44.00</td>
<td>5.00</td>
<td>52.00</td>
<td>6.00%</td>
</tr>
<tr>
<td>Non-U.S.</td>
<td>24.00</td>
<td>15.00</td>
<td>0.00</td>
<td>39.00</td>
<td>4.50%</td>
</tr>
<tr>
<td>Test, Calibration, Set-up, Maintenance4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>244.00</td>
<td>438.00</td>
<td>185.00</td>
<td>867.00</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

1 For the ICR Facility, one magnet day is defined as 24 hours of use.
2 NHMFL-Affiliated users are defined as anyone in the lab’s personnel system [i.e. on our Web site/directory], even if they travel to another site. Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site.
3 The sum of NHMFL-Affiliated and Local usage equals what was formerly referred to as usage by “Internal Investigators.”
APPENDIX A: 2011 USER FACILITY STATISTICS

TABLE 7
ICR Facility: Operations by Discipline

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL-Affiliated1</td>
<td>272.00</td>
<td>0.00</td>
<td>85.00</td>
<td>0.00</td>
<td>166.00</td>
<td>21.00</td>
</tr>
<tr>
<td>Local2</td>
<td>261.00</td>
<td>0.00</td>
<td>207.00</td>
<td>0.00</td>
<td>0.00</td>
<td>54.00</td>
</tr>
<tr>
<td>U.S. University</td>
<td>215.00</td>
<td>0.00</td>
<td>149.00</td>
<td>0.00</td>
<td>0.00</td>
<td>66.00</td>
</tr>
<tr>
<td>U.S. Govt. Lab.</td>
<td>28.00</td>
<td>0.00</td>
<td>17.00</td>
<td>0.00</td>
<td>0.00</td>
<td>11.00</td>
</tr>
<tr>
<td>U.S. Industry</td>
<td>52.00</td>
<td>0.00</td>
<td>50.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Non-U.S.</td>
<td>39.00</td>
<td>0.00</td>
<td>21.00</td>
<td>0.00</td>
<td>0.00</td>
<td>18.00</td>
</tr>
<tr>
<td>Test, Calibration, Set-up, Maintenance</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>867.00</td>
<td>0.00</td>
<td>529.00</td>
<td>0.00</td>
<td>166.00</td>
<td>172.00</td>
</tr>
</tbody>
</table>

1 For the ICR Facility, one magnet day is defined as 24 hours of use.
2 NHMFL-Affiliated users are defined as anyone in the lab’s personnel system [i.e. on our Web site/directory], even if they travel to another site.
Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site.
The sum of NHMFL-Affiliated and Local usage equals what was formerly referred to as usage by "Internal Investigators."

TABLE 8
ICR Facility: New User PIs1 (15)

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Proposal</th>
<th>Year of Magnet Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huettel, Markus</td>
<td>Florida State University</td>
<td>P01537</td>
<td>2010</td>
</tr>
<tr>
<td>Silliman, Brian</td>
<td>University of Florida</td>
<td>P01552</td>
<td>2011</td>
</tr>
<tr>
<td>Dumroese, Debbie</td>
<td>Rocky Mountain Research Station</td>
<td>P01603</td>
<td>2011</td>
</tr>
<tr>
<td>Shi, Quan</td>
<td>China University of Petroleum</td>
<td>P01613</td>
<td>2011</td>
</tr>
<tr>
<td>Doucet, Jocelyn</td>
<td>Services Kengtek Inc.</td>
<td>P01670</td>
<td>2011</td>
</tr>
<tr>
<td>Mead, Ralph</td>
<td>University of North Carolina - Wilmington</td>
<td>P01765</td>
<td>2011</td>
</tr>
<tr>
<td>Whitehead, Andrew</td>
<td>Louisiana State University</td>
<td>P01806</td>
<td>2011</td>
</tr>
<tr>
<td>Liao, Yuhong</td>
<td>State Key Laboratory of Organic Geochemistry</td>
<td>P01811</td>
<td>2011</td>
</tr>
<tr>
<td>Pavlostathis, Spyros</td>
<td>Georgia Institute of Technology</td>
<td>P01818</td>
<td>2011</td>
</tr>
<tr>
<td>Bell, Susan</td>
<td>University of South Florida</td>
<td>P01858</td>
<td>2011</td>
</tr>
<tr>
<td>Jaffe, Rudolf</td>
<td>Florida International University</td>
<td>P01887</td>
<td>2011</td>
</tr>
<tr>
<td>Slater, Peter</td>
<td>ConocoPhillips Company</td>
<td>P01889</td>
<td>2011</td>
</tr>
<tr>
<td>Foreman, Christine</td>
<td>Montana State University</td>
<td>P01890</td>
<td>2011</td>
</tr>
<tr>
<td>Davidson, Michael</td>
<td>NHMFL</td>
<td>P01907</td>
<td>2011</td>
</tr>
<tr>
<td>Martin, Jacob</td>
<td>University of Auckland</td>
<td>P01948</td>
<td>2011</td>
</tr>
</tbody>
</table>

1 This table lists users serving as a principal investigator for the first time, and whose proposal was submitted during this year. It also shows the year in which magnet time was received. TBD stands for To Be Determined, indicating it has not yet been allotted magnet time.
Users, Requests & Operations

Note: A user is an individual or a member of a research group that is allocated magnet time. The user does not have to be "on site" for the experiment. A researcher who sends samples for analysis; a scientist who uses new lab technologies to conduct experiments remotely; or a PI who sends students to the Magnet Lab, are all considered users. All user numbers reflect distinct individuals, i.e. if a user has multiple proposals (different scientific thrusts) or is allocated magnet time more than once during the year, he/she is counted only once.
TABLE 1

Geochemistry Facility: User Demographics

<table>
<thead>
<tr>
<th>Users Present</th>
<th>Users Operating Remotely</th>
<th>Users Sending Sample</th>
<th>Off-Site Collaborators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>16</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>29</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>58</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Minority status includes American Indian, Alaska Native, Black or African American, Hispanic, Native Hawaiian or other Pacific Islander.
3. “Students” generally refers to graduate students, but may include a few undergraduate students.
4. “Users Present” includes users physically present in the MagLab user facility during the experiment AND any MagLab-Affiliated or Local users on the experiment.
5. “Users Operating Remotely” refers to users who operate the magnet system from a remote location. Remote operations are not currently available in all facilities.
6. “Users Sending Sample” refers to users who send the sample to the facility and the experiment is conducted by in-house user support personnel. Users at UF, FSU, and LANL cannot be “sample senders” for facilities located on their campuses.
7. “Off-Site Collaborators” are scientific or technical participants on the experiment; who will not be present, sending sample, or operating the magnet system remotely; and who are not located on the campus of that facility (i.e., they are off-site).
8. The total of Users Present + Users Operating Remotely + Users Sending Sample + and Off-Site Collaborators will equal the total number of users.

TABLE 2

Geochemistry Facility: User Affiliations

<table>
<thead>
<tr>
<th>Users</th>
<th>NHMFL Affiliated Users</th>
<th>Local Users</th>
<th>University Users</th>
<th>Industry Users</th>
<th>National Lab Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Investigators, U.S.</td>
<td>18</td>
<td>9</td>
<td>4</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Senior Investigators, non-U.S.</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, U.S.</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Postdocs, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Students, U.S.</td>
<td>29</td>
<td>18</td>
<td>9</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>Students, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician, U.S.</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Technician, non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>58</td>
<td>35</td>
<td>14</td>
<td>55</td>
<td>0</td>
</tr>
</tbody>
</table>

1. NHMFL-Affiliated users are defined as anyone in the lab’s personnel system (i.e. on our Web site/directory), even if they travel to another site.
2. Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site.
3. The sum of NHMFL-Affiliated and Local users equals what was formerly referred to as “Internal Investigators”.
4. In addition to external users, all users with primary affiliations at FSU, UF, or FAMU are reported in this category, even if they are also NHMFL associates.
5. In addition to external users, users with primary affiliations at NHMFL/LANL are reported in this category.
6. The total of university, industry, and national lab users will equal the total number of users.
TABLE 3

Geochemistry Facility: Users by Discipline

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Senior Investigators, U.S.</th>
<th>Senior Investigators, non-U.S.</th>
<th>Postdocs, U.S.</th>
<th>Postdocs, non-U.S.</th>
<th>Students, U.S.</th>
<th>Students, non-U.S.</th>
<th>Technician, U.S.</th>
<th>Technician, non-U.S.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users</td>
<td>18</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>29</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>58</td>
</tr>
<tr>
<td>Condensed Matter Physics</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chemistry, Geochemistry</td>
<td>14</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Engineering</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Magnets, Matls., Testing, Instruments</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Biology, Biochemistry, Biophysics</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

TABLE 4

Geochemistry Facility: Experimental Requests\(^1\) for Magnet Time

<table>
<thead>
<tr>
<th>Days Requested</th>
<th>Days Granted</th>
<th>Days Declined</th>
</tr>
</thead>
<tbody>
<tr>
<td>565</td>
<td>565 (100%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

\(^1\) Due to operational differences, experimental requests for magnet time are measured differently among facilities. A request for NMR magnet time is measured in the number of days requested. A request for DC Field magnet time is measured in weeks. In the PFF, High B/T, EMR, and ICR facilities, the number of requests is equal to the number of experiments. For any given year, the time (or requests) granted and the time (or requests) declined may not equal the total number of requests. This is because (1) magnet time may be granted to experiments submitted in a prior year and/or (2) in NMR and DC Field facilities, the days or weeks granted may be more (as in the case of a user getting exceptional results) or less than what was requested due to operational limitations.
TABLE 5

Geochemistry Facility: Research Proposals

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Proposals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensed Matter Physics</td>
<td>0</td>
</tr>
<tr>
<td>Chemistry, Geochemistry</td>
<td>18</td>
</tr>
<tr>
<td>Engineering</td>
<td>0</td>
</tr>
<tr>
<td>Magnets, Materials, Testing, Instruments</td>
<td>0</td>
</tr>
<tr>
<td>Biology, Biochemistry, Biophysics</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
</tr>
</tbody>
</table>

1 A “proposal” may have associated with it a single experiment or a group of closely related experiments. A PI may have more than one proposal.

2 The number of proposals satisfying one of the following two conditions: (a) the PI is a minority OR (b) the PI is a non-minority working at a minority-serving college or university AND the proposal includes minority participants.

3 The number of proposals satisfying one of the following two conditions: (a) the PI is a female OR (b) the PI is a male working at a college or university for women AND the proposal includes female participants.

TABLE 6

Geochemistry Facility: Operations Statistics

<table>
<thead>
<tr>
<th>Category</th>
<th>MC-ICP-MS Neptune</th>
<th>ELEMENT</th>
<th>Delta XP</th>
<th>Total Days Allocated /User Affiliated</th>
<th>Percentage Allocated /User Affiliated</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL-Affiliated</td>
<td>170</td>
<td>90</td>
<td>175</td>
<td>435</td>
<td>69%</td>
</tr>
<tr>
<td>Local</td>
<td>0</td>
<td>50</td>
<td>20</td>
<td>70</td>
<td>11%</td>
</tr>
<tr>
<td>U.S. University</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>15</td>
<td>2.5%</td>
</tr>
<tr>
<td>U.S. Govt. Lab.</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>2.5%</td>
</tr>
<tr>
<td>U.S. Industry</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Test, Calibration, Set-up, Maintenance</td>
<td>25</td>
<td>50</td>
<td>20</td>
<td>95</td>
<td>15%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>205</td>
<td>200</td>
<td>225</td>
<td>630</td>
<td>100%</td>
</tr>
</tbody>
</table>

1 User Units are defined as magnet days. For the Geochemistry Facility, one magnet day is defined as 12 hours on the instrument.

2 NHMFL-Affiliated users are defined as anyone in the lab’s personnel system [i.e. on our Web site/directory], even if they travel to another site.

Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site.

The sum of NHMFL-Affiliated and Local usage equals what was formerly referred to as usage by “Internal Investigators.”

3 This instrument was replaced by a new version (ELEMENT2) in October of this year.
TABLE 7

Geochemistry Facility: Operations by Discipline
Number of Magnet Days¹

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NHMFL-Affiliated²</td>
<td>435</td>
<td>0</td>
<td>415</td>
<td>0.00</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Local²</td>
<td>70</td>
<td>0</td>
<td>35</td>
<td>0.00</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>U.S. University</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U.S. Govt. Lab.</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U.S. Industry</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Non-U.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Test, Calibration, Set-up, Maintenance</td>
<td>95</td>
<td>0</td>
<td>95</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>630</td>
<td>0</td>
<td>575</td>
<td>0.00</td>
<td>0</td>
<td>55</td>
</tr>
</tbody>
</table>

¹ User Units are defined as magnet days. For the Geochemistry Facility, one magnet day is defined as 12 hours on the instrument.
² NHMFL-Affiliated users are defined as anyone in the lab’s personnel system (i.e. on our Web site/directory), even if they travel to another site.
Local users are defined as any non-NHMFL-Affiliated researchers originating at any of the institutions in proximity to the MagLab sites (i.e. researchers at FSU, UF, FAMU, or LANL), even if they travel to another site.
The sum of NHMFL-Affiliated and Local usage equals what was formerly referred to as usage by “Internal Investigators.”

TABLE 8

Geochemistry Facility: New User PIs¹ (0)

There were no new user Principal Investigators in the Geochemistry Facility during 2011.
APPENDIX B

Research Reports by Category

At the end of each year, Magnet Lab users and faculty at FSU, UF, and LANL submit brief abstracts of their experiments, research, and scholarly endeavors. In 2011, 444 research reports in 18 categories were reviewed and approved by facility or department directors, and all are published online: http://www.magnet.fsu.edu/usershub/publications/researchreportsonline.aspx. The reports are searchable by facility, category, first author, PI, keywords, or general search.

Biochemistry – 46 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMT/E</td>
<td>Brüschweiler, R., NHMFL and FSU Department of Chemistry and Biochemistry</td>
<td>Iterative Optimization of Molecular Mechanics Force Fields from NMR Data of Full-Length Proteins in their Native Environment</td>
</tr>
<tr>
<td>EMR</td>
<td>Angerofer, A., University of Florida, Department of Chemistry</td>
<td>Transitions Between Higher Spin Manifolds of Mn(II) in Oxalate Decarboxylase</td>
</tr>
<tr>
<td>EMR</td>
<td>Moomaw, E.W., Kennesaw State University, Chemistry and Biochemistry</td>
<td>Kinetic and Spectroscopic Characterization of Bicupin Oxalate Oxidase and Putative Active Site Mutants</td>
</tr>
<tr>
<td>ICR</td>
<td>Fajer, R.G., FSU, Molecular Biophysics</td>
<td>Complexation and Calcium-Induced Conformational Changes in the CardiacTroponin Complex Monitored by Hydrogen/Deuterium Exchange and FT-ICR Mass Spectrometry</td>
</tr>
<tr>
<td>ICR</td>
<td>Guo, M., Scripps, Biochemistry</td>
<td>Structural Context for Mobilization of a Human tRNA Synthetase from its Cytoplasmic Complex</td>
</tr>
<tr>
<td>ICR</td>
<td>Marshall, A.G., FSU, NHMFL, Chemistry</td>
<td>Valence Parity to Distinguish c’ and z• Ions from Electron Capture Dissociation/Electron Transfer Dissociation of Peptides: Effects of Isomers, Isobars, and Proteolysis Specificity</td>
</tr>
<tr>
<td>ICR</td>
<td>Marshall, A.G., FSU, NHMFL, Chemistry</td>
<td>Algae Polar Lipids Characterized by Online Liquid Chromatography Coupled with Hybrid Linear Quadrupole Ion Trap/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry</td>
</tr>
<tr>
<td>ICR</td>
<td>Nilsson, C.L., Pfizer, Biochemistry</td>
<td>High Mass Accuracy and Resolution Facilitate Identification of Glycosphingolipids and Phospholipids</td>
</tr>
<tr>
<td>ICR</td>
<td>Rouse, J.C., Pfizer</td>
<td>Unit Mass Baseline Resolution for an Intact 148 kDa Therapeutic Monoclonal Antibody by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry</td>
</tr>
<tr>
<td>ICR</td>
<td>Roux, K.H., FSU, Molecular Biophysics</td>
<td>Epitope Mapping of a 95 kDa Antigen in Complex with Antibody by Solution-Phase Amidic Backbone Hydrogen/Deuterium Exchange Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry</td>
</tr>
<tr>
<td>ICR</td>
<td>Sang, Q.-X., FSU, Chemistry</td>
<td>Differential Phosphopeptide Expression in a Benign Breast Tissue, and Triple-Negative Primary and Metastatic Breast Cancer Tissues from the Same African-American Woman by LC-LTQ/FT-ICR Mass Spectrometry</td>
</tr>
<tr>
<td>ICR</td>
<td>Sang, Q.-X.A., FSU, Chemistry</td>
<td>Characterization of the Phosphoproteome in Androgen-Repessed Human Prostate Cancer Cells by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry</td>
</tr>
<tr>
<td>ICR</td>
<td>Yang, X.-L., Scripps, Biochemistry</td>
<td>Dispersed Disease-Causing Neomorphic Mutations on a Single Protein Promote the Same Localized Conformational Opening</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Dossey, A.T., USDA-ARS</td>
<td>Continued Discovery of Defensive Chemistry in Walkingstick Insects (Order Phasmatodea)</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Fanucci, G.E., University of Florida, Chemistry</td>
<td>1H, 13N and 13C NMR Backbone Assignment of Multi-Drug Resistant HIV-1 Protease (HIV-1PR) Variant, MDR 769 and 13N Spin Relaxation Studies of Subtype B D30N HIV-1PR</td>
</tr>
<tr>
<td>Facility</td>
<td>PI</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Fanucci, G.E., University of Florida, Chemistry</td>
<td>Backbone Assignment of HIV-1 Protease Variants and (^{15})N Relaxation Measurement</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Fanucci, G.E., University of Florida, Chemistry</td>
<td>Characterizing Conformational Changes in SAPs with Solution NMR</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Gamcsik, M.P., University of North Carolina, Biomedical Engineering</td>
<td>MRI/S Studies of Glycine and Glutathione Metabolism in a Rat Mammary Tumor</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Long, J.R., University of Florida</td>
<td>Partitioning, Dynamics, and Orientation of Lung Surfactant Peptide KL4 in Phospholipid Bilayers</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Long, J.R., University of Florida</td>
<td>Solid State (^{31})P NMR Characterization of Lung Surfactant Preparations</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Long, J.R., University of Florida</td>
<td>Structural Analysis of the C-Terminus of Lung Surfactant Protein B (SP-B)</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Long, J.R., University of Florida</td>
<td>Structural Studies of Adhesin Protein P1</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Nader, H.B., UNIFESP, Biochemistry</td>
<td>Analysis and Identification of Contaminants in Heparin Raw Materials</td>
</tr>
<tr>
<td>NMR</td>
<td>Brüschweiler, R., Florida State University, Chemistry & Biochemistry</td>
<td>Characterization of the Structural Dynamics of Human MDM2 Interaction with p53 by Multi-dimensional NMR Spectroscopy</td>
</tr>
<tr>
<td>NMR</td>
<td>Brüschweiler, R., Florida State University, Chemistry & Biochemistry</td>
<td>Molecular Basis for Kinetic Cooperativity and Allosteric Activation of Human Glucokinase</td>
</tr>
<tr>
<td>NMR</td>
<td>Brüschweiler, R., Florida State University, Chemistry & Biochemistry</td>
<td>Toward a Predictive Understanding of Slow Methyl Group Dynamics in Proteins</td>
</tr>
<tr>
<td>NMR</td>
<td>Brüschweiler, R., Florida State University, Chemistry & Biochemistry</td>
<td>In Silico Elucidation of the Recognition Dynamics of Ubiquitin</td>
</tr>
<tr>
<td>NMR</td>
<td>Brüschweiler, R., Florida State University, Chemistry & Biochemistry</td>
<td>Ca(^{2+}) Binding Alters the Interdomain Flexibility Between the Two Cytoplasmic Calcium-binding Domains in the Na(^{+}/)Ca(^{2+}) Exchanger</td>
</tr>
<tr>
<td>NMR</td>
<td>Brüschweiler, R., Florida State University, Chemistry & Biochemistry</td>
<td>Deconvolution of Chemical Mixtures with High Complexity by NMR Consensus Trace Clustering</td>
</tr>
<tr>
<td>NMR</td>
<td>Can, T.V., FSU Physics</td>
<td>Magic Angle Spinning Solid State NMR Studies of Conductance Domain of M2 Proton Channel</td>
</tr>
<tr>
<td>NMR</td>
<td>Cotten, M., Hamilton College, Chemistry</td>
<td>Structural Investigations of Antimicrobial Piscidin Bound to Aligned Cholesterol-Containing Lipid Bilayers</td>
</tr>
<tr>
<td>NMR</td>
<td>Cross, T.A., Florida State University, Chemistry and Biochemistry</td>
<td>Structural Studies of M. tuberculosis Integral Membrane Protein Rv1861 in a Lipid Bilayer Environment</td>
</tr>
<tr>
<td>NMR</td>
<td>Cross, T.A., FSU, Chemistry and Biochemistry</td>
<td>Thermo-Stable Bicelles to Study Membrane Protein, LspA, by Oriented Sample Solid-State NMR</td>
</tr>
<tr>
<td>NMR</td>
<td>Cross, T.A., NHMFL and FSU, Chemistry & Biochemistry</td>
<td>CrgA: a Mtb Membrane Protein Structure Determination by NMR Spectroscopy</td>
</tr>
<tr>
<td>NMR</td>
<td>Cross, T.A., NHMFL & FSU, Chemistry and Biochemistry, FSU</td>
<td>The Influence of Membrane Mimetic Environments on Membrane Protein Structures & a Tool for Validating Native Structures</td>
</tr>
<tr>
<td>NMR</td>
<td>Cross, T.A., NHMFL & FSU, Chemistry and Biochemistry</td>
<td>Is MgtC, A Potential Drug Target in M. tuberculosis, Inhibited by MgtR?</td>
</tr>
<tr>
<td>NMR</td>
<td>Cross, T.A., NHMFL</td>
<td>Structural Study of M2 Proton Channel In Situ by Solid State MAS NMR</td>
</tr>
<tr>
<td>NMR</td>
<td>Eisenmesser, E.Z., Assistant Professor, Biochemistry & Molecular Genetics</td>
<td>Interleukin-8 Exhibits Inherent Dynamics Localized to its Receptor Binding Surface</td>
</tr>
<tr>
<td>NMR</td>
<td>Eisenmesser, E.Z., University of Colorado Denver, Biochemistry & Molecular Genetics</td>
<td>Comparing Micro-Millisecond Motions Among Different Cyclophilin Family Members</td>
</tr>
<tr>
<td>NMR</td>
<td>Long, J.R., University of Florida</td>
<td>Characterization of Hydrogen Bonding in Amphiphilic Peptide Helices via REDOR</td>
</tr>
<tr>
<td>NMR</td>
<td>Paravastu, A.K., Florida State University, Chemical and Biomedical Engineering</td>
<td>Solid State NMR Analysis of Oligomeric Structures of the 42-Residue Amyloid- (\beta) peptide</td>
</tr>
<tr>
<td>NMR</td>
<td>Polenova, T., University of Delaware, Chemistry and Biochemistry</td>
<td>Solid-State NMR Structural and Dynamics Studies of HIV-1 Protein Assemblies</td>
</tr>
<tr>
<td>NMR</td>
<td>Smirnov, S.L., Western Washington University, Chemistry</td>
<td>The Solution Structure of D6 Domain of Villin, an Actin-Bundling Protein</td>
</tr>
<tr>
<td>NMR</td>
<td>Smirnov, S.L., Western Washington University, Chemistry</td>
<td>Structural Characterization of the DNA-binding Domain of the Xenopus NO38 Chaperone Complexed with its Duplex DNA Target.</td>
</tr>
<tr>
<td>NMR</td>
<td>Tian, F., Penn State College of Medicine, Biochemistry and Molecular Biology</td>
<td>Structural Analysis of a Recombinant Protein in Native Escherichia coli Membranes</td>
</tr>
<tr>
<td>Facility</td>
<td>PI</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DC Field</td>
<td>Valles, Jr., J.M., Brown University, Physics</td>
<td>Probing Protist Swimming Mechanics using Magnetic Force Buoyancy Variation</td>
</tr>
<tr>
<td>EMR</td>
<td>Bienkiewicz, E.A., FSU, College of Medicine</td>
<td>EPR Analysis of an Intrinsically Disordered Amino-Proximal Domain of Prion Protein</td>
</tr>
<tr>
<td>EMR</td>
<td>Liu, A., Georgia State University, Chemistry</td>
<td>Biochemical, Structural and Spectroscopic Studies on the Metal Centers in Hydroxyanthranilic Acid Dioxygenase</td>
</tr>
<tr>
<td>EMR</td>
<td>Reinherz, E.L., Harvard Medical School, Dana-Farber Cancer Institute</td>
<td>Antibody-Mediated Mechanics on a Membrane-Embedded HIV gp41 Segment by EPR</td>
</tr>
<tr>
<td>EMR</td>
<td>Tian, C.T., University of Science and Technology of China</td>
<td>Pulsed EPR Distance Measurements of Escherichia Doli Diacylglycerol Kinase Homotrim by DEER (Double Electron-Electron Resonance)</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Blackband, S.J., University of Florida, Neurosciences</td>
<td>Quantitative Diffusion MR Microscopy of Porcine Neurons</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Dotson, V.M., University of Florida, Clinical and Health Psychology</td>
<td>Structural and Functional Brain Changes in Late-Life Major and Minor Depression</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Edison, A.S., UF/NHMFL, Biochemistry & Molecular Biology</td>
<td>Identification of a Female-specific Mating Pheromone in Panagrellus redivivus</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Edison, A.S., UF/NHMFL, Biochemistry & Molecular Biology</td>
<td>Caenorhabditis elegans Produces Several Novel Glucosides of 1-Hydroxyphenazine, a Toxin Released by Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Helderman, C., University of Florida</td>
<td>Characterization of Brain Morphology in Mucopolysaccharidosis Type IIIB Affected Mice Using Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Jorgensen, C., University of Southern Denmark, Institute of Biology</td>
<td>Phosphorus Cycling in Wetlands and Riparian Zones</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Mareci, T.H., University of Florida, Biochemistry and Molecular Biology</td>
<td>Gd-Albumin Relaxivity in the Rat Thalamus In Vivo at 11.1 T</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Naylor, G.J.P., College of Charleston, Biology</td>
<td>Shark Virtual Comparative Anatomy Using MRI</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Simpson, N.E., University of Florida, Medicine</td>
<td>Development of a Choline Calibration Curve to Monitor an Implanted Bioartificial Organ</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Su, L.M., University of Florida, Urology</td>
<td>Fiber Tract Mapping in Isolated Sections of Human Prostate at High Field</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Vestergaard-Poulsen, P.E., University of Aarhus, Denmark</td>
<td>DWI and Quantitative Modeling of Hippocampal Neurite Loss in Chronic Stress</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Walter, G.A., University of Florida, Physiology</td>
<td>Chemical Shift-Based Imaging and Modeling of Dystrophic Muscle</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Walter, G.A., University of Florida, Physiology</td>
<td>MRI and DTI Characterization of Severe Contusion Injury at 17.6T</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Walter, G.A., University of Florida, Physiology</td>
<td>Morphological Characterization of a New Model of Spinal Cord Injury Without Reloading Using 3D 1H MRI</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Walter, G.A., University of Florida, Physiology</td>
<td>Quantitative Measurement of Skeletal Muscle Perfusion Using Arterial Spin Labeling NMR Imaging at High (4.7T) and Ultra-High Field (11.1/17.6T)</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Walter, G.A., University of Florida, Physiology</td>
<td>Gd Doped Silica Nanoparticles Encapsulating ICG</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Walter, G.A., University of Florida, Physiology</td>
<td>Myocardium Transverse Relaxation Time in mdx Mice Following Uphill Running</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Walter, G.A., University of Florida, Physiology</td>
<td>Manganese-Silica Hybrid Nanostructures as MRI Contrast Agents</td>
</tr>
<tr>
<td>NMR</td>
<td>Grant, S.C., NHMFL-FSU, Chemical & Biomedical Engineering</td>
<td>Tracking Neuroprogenitor Cells After Traumatic Brain Injury with 21.1 T MR Microscopy</td>
</tr>
<tr>
<td>NMR</td>
<td>Grant, S.C., NHMFL-FSU, Chemical & Biomedical Engineering</td>
<td>Tracking Human Mesenchymal Stem Cells in Association with Stroke Utilizing 1H and 23Na Nuclei at 21.1 T</td>
</tr>
<tr>
<td>NMR</td>
<td>Levenson, C.W., FSU College of Medicine</td>
<td>MR Imaging of the Rodent Traumatic Brain Injury at 21.1 T</td>
</tr>
<tr>
<td>NMR</td>
<td>Schepkin, V.D., NHMFL, CIMAR</td>
<td>3D Partial Volume Effects During Low Gamma MRI</td>
</tr>
<tr>
<td>NMR</td>
<td>Schepkin, V.D., NHMFL, CIMAR</td>
<td>In vivo Chlorine MR Imaging at 21.1 T</td>
</tr>
<tr>
<td>NMR</td>
<td>Schepkin, V.D., NHMFL, CIMAR</td>
<td>Tumor Resistance and in vivo Sodium MR Imaging at 21.1 T</td>
</tr>
</tbody>
</table>
APPENDIX B: RESEARCH REPORTS BY CATEGORY

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMR</td>
<td>Wszolek, K., Mayo Clinic, Neurology</td>
<td>High Resolution MRI at 21.1 T of the Hippocampus and Temporal Lobe White Matter in the Differential Classification of Alzheimer’s Disease and Diffuse Lewy Body Disorder</td>
</tr>
<tr>
<td>NMR</td>
<td>Zhu, P.Z., University of Michigan</td>
<td>Effects of Glycation on Diabetic Bone Studied by Solid-State NMR</td>
</tr>
</tbody>
</table>

Chemistry – 45 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Field</td>
<td>Knappenberger, K.L., Florida State University, Chemistry and Biochemistry</td>
<td>Magneto-Optical Photoluminescence Studies of Isolated and Aggregated Semiconductor Nanoscale Materials at Ultralow Temperatures</td>
</tr>
<tr>
<td>DC Field</td>
<td>Krzystek, J., NHMFL Tallahassee, CMS</td>
<td>High-Frequency and -Field EPR of a Series of Hexapyrazole-coordinated Complexes of High-Spin Fe(II)</td>
</tr>
<tr>
<td>DC Field</td>
<td>Musfeldt, J.L., University of Tennessee, Chemistry</td>
<td>Manipulating the Singlet-Triplet Equilibrium in Organic Biradical Materials</td>
</tr>
<tr>
<td>EMR</td>
<td>Christou, G., University of Florida</td>
<td>Mn₇: A Species at the Classical/Quantum Spin Interface</td>
</tr>
<tr>
<td>EMR</td>
<td>Colvin, V.L., Rice University, Rice University</td>
<td>Investigation of Novel Iron Material’s Composition via Mössbauer Spectroscopy</td>
</tr>
<tr>
<td>EMR</td>
<td>Dalal, N.S., Florida State University, Chemistry</td>
<td>Direct Evidence from EPR for Multiple Configurations of Uncommon Paddlewheel Re₅⁺ Compounds Surrounded by an Unsymmetrical Bicyclic Guanidinate</td>
</tr>
<tr>
<td>EMR</td>
<td>Dalal, N.S., Florida State University, Department of Chemistry and Biochemistry</td>
<td>D Tensor Determination in a Potential Single Molecule Magnet, Cr₃(dpa)₄Cl₂•CH₂Cl₂</td>
</tr>
<tr>
<td>EMR</td>
<td>Dinse, K.-P., FU Berlin, Physics</td>
<td>Characterization and Quantification of Reduced Sites on Supported Vanadium Oxide Catalysts using High-Frequency EPR</td>
</tr>
<tr>
<td>EMR</td>
<td>Kokozay, V.N., Kiev University, Ukraine, Chemistry</td>
<td>Novel Heterometallic Complexes Featuring Unusual Tetra-{(CollII2FeII2(µ-O)6) and Octanuclear (CollII4FeII4(µ-O)14) Cores</td>
</tr>
<tr>
<td>EMR</td>
<td>Kovacs, Z., UT Southwestern Medical Center, Advanced Imaging Research Center</td>
<td>Electron Spin Resonance (ESR) and Dynamic Nuclear Polarization (DNP) Studies of Galvinoxyl Free Radical</td>
</tr>
<tr>
<td>EMR</td>
<td>Kovacs, Z., UT Southwestern Medical Center, Advanced Imaging Research Center</td>
<td>DPPH as DNP Polarizing Agents: ESR Investigation at 94 GHz and 240 GHz</td>
</tr>
<tr>
<td>EMR</td>
<td>Krzystek, J., NHMFL, CMS</td>
<td>Frequency-Domain Magnetic Resonance Spectroscopy of High-Spin Fe(II) Ions</td>
</tr>
<tr>
<td>EMR</td>
<td>Kyritsis, P., University of Athens, Greece, Chemistry</td>
<td>Magnetostuctural Correlations in [Ni(II)]{(OPPh2)(EPPh2)N}2(sol)2] Complexes, E = S, Se; sol = dmf, thf, Derived by HFEP, Magnetometry and Theoretical Calculations</td>
</tr>
<tr>
<td>EMR</td>
<td>Lysenko, A., Kiev University, Ukraine, Chemistry</td>
<td>Structure and Magnetic Behavior of Cu(II)- Metal Organic Frameworks Supported by 1,2,4-Triazolyl-Bifunctionalized Adamantane Scaffold</td>
</tr>
<tr>
<td>EMR</td>
<td>Reger, D., University of South Carolina, Chemistry</td>
<td>Metal-Metal Interactions in Copper(II) Carboxylate Dimers Prepared from Ligands Designed to Form a Robust π...π Stacking Synthon</td>
</tr>
<tr>
<td>EMR</td>
<td>Sakiyama, H., Yamagata University, Chemistry</td>
<td>An HFEP Study of a Dinuclear nickel(II) Complex</td>
</tr>
<tr>
<td>EMR</td>
<td>Sarkar, B., Universitaet Stuttgart, Institut für Anorganische Chemie</td>
<td>HFEP Studies on Mono- and Di-Nuclear High-Spin Transition Metal Complexes of Novel Chelating Ligands Based on Tris(triazole)amines and Quinones</td>
</tr>
<tr>
<td>EMR</td>
<td>Strouse, G.F., Florida State University</td>
<td>Spin Relaxation in Mn-doped CdSe Quantum Dots</td>
</tr>
<tr>
<td>EMR</td>
<td>Sunatsuki, Y., Okayama University, Chemistry</td>
<td>A Single Tripodal Ligand Stabilizing Three Different Oxidation States (II, III, and IV) of Manganese</td>
</tr>
<tr>
<td>EMR</td>
<td>Telser, J., Roosevelt University, Biological, Chemical and Physical Sciences</td>
<td>HFEP Studies of Vanadocene (Bis(cyclopentadienyl)vanadium(II), Cp2V)</td>
</tr>
<tr>
<td>EMR</td>
<td>Telser, J., Roosevelt University, Biological, Chemical and Physical Sciences</td>
<td>HFEP of Mn(III) Corrole and Corrolazine Complexes in Frozen Solution</td>
</tr>
<tr>
<td>EMR</td>
<td>Veige, A.S., University of Florida, Chemistry</td>
<td>High Frequency EPR Study of a Cr(IV)-O-Cr(IV) Dimer Complex</td>
</tr>
<tr>
<td>EMR</td>
<td>Venkataraman, R., Jackson State University, Chemistry</td>
<td>High-Field EPR Studies on Nitrogen-Based Adducts of Copper(II) Levulinate</td>
</tr>
<tr>
<td>EMR</td>
<td>Wojciechowski, K., Warsaw University of Technology, Analytical Chemistry</td>
<td>Determination of a Small Isotropic Exchange Integral from High-Field EPR Spectra</td>
</tr>
<tr>
<td>ICR</td>
<td>Asomaning, S., Baker Hughes</td>
<td>Characterization of Naphthenic Acids in Crude Oils and Naphthenates by Electrospray Ionization FT-ICR Mass Spectrometry</td>
</tr>
</tbody>
</table>
APPENDIX B: RESEARCH REPORTS BY CATEGORY

Condensed Matter Technique Development – 8 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Field</td>
<td>Boebinger, G.S., NHMFL</td>
<td>Specific Heat Instrumentation and Measurements on the Cuprate Superconductor YBCO</td>
</tr>
<tr>
<td>DC Field</td>
<td>Brooks, J.S., NHMFL at Florida State University, Physics</td>
<td>Fabrication of Sticky Stamp Electrodes for Low Temperature and High Magnetic Field Electronic Transport Measurement of Mesoscopic Sized Sample</td>
</tr>
<tr>
<td>DC Field</td>
<td>Hannahs, S., NHMFL</td>
<td>Improvement of the Rotating Probes at the NHMFL DC Field Facility</td>
</tr>
<tr>
<td>DC Field</td>
<td>Hilton, D.J., University of Alabama at Birmingham, Physics</td>
<td>Decoherence in a High-Mobility Two-Dimensional Electron Gas</td>
</tr>
<tr>
<td>DC Field</td>
<td>Murphy, T.P., NHMFL</td>
<td>Magnetic Field Calibration of RuO$_2$ Thermometers</td>
</tr>
<tr>
<td>DC Field</td>
<td>Suslov, A.V., NHMFL</td>
<td>Electromagnetic Acoustic Transducer (EMAT) in the GHz Frequency Range</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Kemper, J.B., Florida State University, Department of Physics/NHMFL</td>
<td>Calibration of Resistive Thermometers in Pulsed Fields to 45 Teslas</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Kohama, Y., NHMFL, Tokyo University</td>
<td>Development of AC Measurement of Thermal Conductivity</td>
</tr>
</tbody>
</table>
Engineering Materials – 14 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Field</td>
<td>Chabanov, A., University of Texas at San Antonio, Physics</td>
<td>Microwave Faraday Effect in 1D Magnetophotonic Crystals</td>
</tr>
<tr>
<td>DC Field</td>
<td>Howarth, T.R., Naval Sea Systems Command Division Newport</td>
<td>Acoustic Characterization of Magnetorheological Fluids</td>
</tr>
<tr>
<td>DC Field</td>
<td>Ludtka, G.M., Oak Ridge National Laboratory, Materials Science & Technology Division</td>
<td>Enhanced Performance Materials through Thermomagnetic Processing Solubility Enhancement and Nanoparticle Dispersion Strengthening</td>
</tr>
<tr>
<td>DC Field</td>
<td>Molodov, D.A., RWTH Aachen University, Institute of Physical Metallurgy and Metal Physics</td>
<td>Discontinuous Measurements of Magnetically Driven Motion of Specific Symmetrical Grain Boundaries in Zn</td>
</tr>
<tr>
<td>DC Field</td>
<td>Zhang, L., Northeastern University, Institute of Electromagnetic Processing of Materials (Ministry of Education)</td>
<td>Engineering Magnetic Properties of Nanocomposite Magnet by High Magnetic Field</td>
</tr>
<tr>
<td>DC Field</td>
<td>Zhou, X.L., Kunming University of Science and Technology, China, NHMFL</td>
<td>Magnetic Field-promoted Anomalous Pearlite at Early Phase Transformation Stages</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Vasenkov, S., University of Florida, Chem. Eng.</td>
<td>Diffusion in Mixtures of Room Temperature Ionic Liquids and Carbon Dioxide by Pulsed Field Gradient (PFG) NMR</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Vasenkov, S., University of Florida, Chem. Eng.</td>
<td>Gas Transport in Aluminosilicate Nanotubes by Diffusion NMR</td>
</tr>
<tr>
<td>MS & T</td>
<td>Han, K., NHMFL</td>
<td>Impacts of Heat Treatment on Properties and Microstructure of Cu16at%Ag Conductors</td>
</tr>
<tr>
<td>NMR</td>
<td>Alamo, R.G., FAMU-FSU College of Engineering, Chemical and Biomedical Engineering</td>
<td>Morphological and Kinetic Partitioning of Comonomer in Random Propylene 1-Butene Copolymers</td>
</tr>
<tr>
<td>NMR</td>
<td>An, L., University of Central Florida, AMPAC</td>
<td>NMR Studies on Structures of Polymer-Derived Amorphous SiCN Ceramics</td>
</tr>
<tr>
<td>NMR</td>
<td>Paravastu, A.K., Florida State University, Chemical and Biomedical Engineering</td>
<td>Solid State NMR Structural Analysis of Nanofibers Formed via Self-Assembly of RADA16-I Designer Peptides</td>
</tr>
<tr>
<td>NMR</td>
<td>Paravastu, A.K., Florida State University, Chemical and Biomedical Engineering</td>
<td>Solid State 19F NMR Light-Induced Isomerization of Azobenzene Glassy Polymer Networks</td>
</tr>
</tbody>
</table>

Geochemistry – 23 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geochem.</td>
<td>Du, X., FSU, Earth Ocean and Atmospheric Sciences</td>
<td>Variability and Periodicity in Precipitation and Discharge of the Red River</td>
</tr>
<tr>
<td>Geochem.</td>
<td>Froelich, P.N., Froelich Educational Services</td>
<td>Speleothem Trace Element Signatures: A Modern Hydrologic Geochemical Study of Cave Drip Waters and Farmed Calcite</td>
</tr>
<tr>
<td>Geochem.</td>
<td>Humayun, M., Florida State University, Earth, Ocean & Atmospheric Science</td>
<td>Iron Geochemistry of the Earth’s Silicate Mantle</td>
</tr>
<tr>
<td>Geochem.</td>
<td>Humayun, M., Florida State University, Earth, Ocean & Atmospheric Science</td>
<td>Siderophile Element Abundances in Metal-Sulfide Assemblages from the Almahata Sitta Ureilite, a.k.a. Asteroid 2008 TC3</td>
</tr>
<tr>
<td>Geochem.</td>
<td>Humayun, M., Florida State University, Earth, Ocean & Atmospheric Science</td>
<td>W-Os Isotope Systematics of Iron Meteorites: GCR Irradiation and Chronology</td>
</tr>
<tr>
<td>Geochem.</td>
<td>Landing, W.M., FSU, EOAS</td>
<td>Determination of Low Concentration Iron and Other Trace Elements by Octopole Collision/Reaction Cell (CRC) Quadrupole-ICP-MS</td>
</tr>
<tr>
<td>Geochem.</td>
<td>Landing, W.M., FSU, EOAS</td>
<td>GEOTRACES: Aerosol and Rainwater Sampling and Analysis</td>
</tr>
<tr>
<td>Geochem.</td>
<td>Landing, W.M., FSU, EOAS</td>
<td>Sampling and Analysis of Trace Metals in the Sea Surface Microlayer</td>
</tr>
</tbody>
</table>
Geochemistry

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geochem.</td>
<td>Landing, W.M., FSU, EOAS</td>
<td>Collaborative Research: A Novel Tracer Approach to Estimate the Atmospheric Input of Trace Elements Into the Global Ocean</td>
</tr>
<tr>
<td>Geochem.</td>
<td>Odom, L., Geochemistry - NHMFL, Earth Ocean and Atmospheric Sciences</td>
<td>The Isotopic Composition of Atmospheric Mercury</td>
</tr>
<tr>
<td>Geochem.</td>
<td>Salters, V.J.M., NHMFL & FSU, Earth Ocean and Atmospheric Sciences</td>
<td>Pore Water Profile of Lithium Isotopes from Deep Sea Drilling Project (DSDP) Sites 1262 and 1267 (Walvis Ridge)</td>
</tr>
<tr>
<td>Geochem.</td>
<td>Salters, V.J.M., NHMFL & FSU, Earth Ocean and Atmospheric Sciences</td>
<td>Domains of Depleted Mantle; Deep Melting But Limited Crustal Thickness</td>
</tr>
<tr>
<td>Geochem.</td>
<td>Salters, V.J.M., NHMFL and FSU, Earth Ocean and Atmospheric Sciences</td>
<td>The Middle Jurassic Flood Basalts of Southeastern North America</td>
</tr>
<tr>
<td>Geochem.</td>
<td>Salters, V.J.M., NHMFL and FSU, Earth Ocean and Atmospheric Sciences</td>
<td>Ultra Depleted Mantle at the Gakkel Ridge Based on Hafnium and Neodymium Isotopes</td>
</tr>
<tr>
<td>Geochem.</td>
<td>Salters, V.J.M., NHMFL/FSU, Earth Ocean and Atmospheric Sciences</td>
<td>Accurate and Precise Determination of Mg Isotopes by Multi Collector Inductively Coupled Mass Spectrometry (MC-ICP-MS)</td>
</tr>
<tr>
<td>Geochem.</td>
<td>Wang, Y., FSU, EOAS</td>
<td>Isotopic Niche Overlap of Two Planktivorous Fish in Southern China</td>
</tr>
<tr>
<td>Geochem.</td>
<td>Wang, Y., NHMFL and Florida State University, EOAS</td>
<td>Late Neogene Environmental Changes in the Central Himalaya Related to Tectonic Uplift and Orbital Forcing</td>
</tr>
<tr>
<td>ICR</td>
<td>Cooper, W.T., FSU, Chemistry</td>
<td>Influence of Acidification on the Optical Properties and Molecular Composition of Dissolved Organic Matter</td>
</tr>
<tr>
<td>NMR</td>
<td>Vugmeyster, L., University of Alaska Anchorage</td>
<td>Characterization of Unfrozen Water In Soils of Dry Valleys of Antarctica</td>
</tr>
</tbody>
</table>

Graphene – 16 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMT/E</td>
<td>Vafek, O., NHMFL, FSU</td>
<td>Analysis of Fermions on a Honeycomb Bilayer Lattice with Finite-range Interactions in the Weak-Coupling Limit</td>
</tr>
<tr>
<td>DC Field</td>
<td>Andrei, E.Y., Rutgers University, Physics & Astronomy</td>
<td>Symmetry Breaking of Electronic States in Graphene Manifested Through Electrical Transport in High Magnetic Field</td>
</tr>
<tr>
<td>DC Field</td>
<td>Chen, Y.P., Department of Physics, Purdue University</td>
<td>Magnetotransport in Graphene Nanostructures: Disorder and Interaction Physics for Dirac Fermions</td>
</tr>
<tr>
<td>DC Field</td>
<td>Du, X., Stony Brook University, Physics and Astronomy</td>
<td>Magnetically Induced Phases in Suspended Graphene</td>
</tr>
<tr>
<td>DC Field</td>
<td>Jiang, Z., Georgia Tech, Physics</td>
<td>Infrared Magneto-Transmission of Graphene Nanoribbons Arrays</td>
</tr>
<tr>
<td>DC Field</td>
<td>Kim, P., Columbia University, Physics</td>
<td>Evidence for Skyrmionic Excitations in Graphene</td>
</tr>
<tr>
<td>DC Field</td>
<td>Lau, C.N., University of California, Riverside, Dept of Physics</td>
<td>Stacking-Dependent Band Gap and Quantum Transport in Trilayer Graphene</td>
</tr>
<tr>
<td>DC Field</td>
<td>Lau, C.N., University of California, Riverside, Physics</td>
<td>Transport Spectroscopy of Symmetry-Broken Insulating States in Bilayer Graphene</td>
</tr>
<tr>
<td>DC Field</td>
<td>Newell, D.B., NIST</td>
<td>Centimeter Scale CVD Graphene Quantum Hall for Quantum Resistance Standard</td>
</tr>
<tr>
<td>DC Field</td>
<td>Shepard, K.L., Columbia University, Electrical Engineering</td>
<td>Spin Characterization of Graphene’s $\nu = 0$ State</td>
</tr>
<tr>
<td>DC Field</td>
<td>Smimov, D., NHMFL</td>
<td>Magneto-Phonon Resonance in Graphite</td>
</tr>
<tr>
<td>DC Field</td>
<td>Smimov, D., NHMFL</td>
<td>Infrared Photoconductivity of Graphene</td>
</tr>
<tr>
<td>DC Field</td>
<td>Szkopek, T., McGill University, Electrical and Computer Engineering</td>
<td>High Magnetic Field Measurement of Hydrogenated Graphene</td>
</tr>
</tbody>
</table>
APPENDIX B: RESEARCH REPORTS BY CATEGORY

Kondo/Heavy Fermion Systems – 10 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Field</td>
<td>Harrison, N., LANL</td>
<td>Emergence of an Unreconstructed Fermi Surface from the Hidden Order of URu$_2$Si$_2$</td>
</tr>
<tr>
<td>DC Field</td>
<td>Sakai, H., Japan Atomic Energy Agency, Advanced Science Research Center</td>
<td>29Si-NMR Study of URu$_2$Si$_2$ Under High Field: Investigation of the 22 T anomaly found within the hidden order phase and its critical behavior around 35 T</td>
</tr>
<tr>
<td>DC Field</td>
<td>Schmiedeshoff, G.M., Occidental College, Physics</td>
<td>The Phase Diagram of YbAgGe with Magnetic Fields Along the c-Axis</td>
</tr>
<tr>
<td>DC Field</td>
<td>Terashima, T., Natl. Inst. Mat. Sci.</td>
<td>de Haas-van Alphen Measurements on the Rattling-Induced Superconductor KOs$_2$O$_6$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Bauer, E.D., LANL</td>
<td>Localized 5f Electrons in Superconducting PuCoIn$_5$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Haga, Y., Japan Atomic Energy Agency</td>
<td>Fermi Surface Study on Puln3 Using Proximity Detector Circuits</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Martin, I., LANL</td>
<td>A Geometrical Hall Effect in a Magnetically Frustrated Metal</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Nakotte, H., New Mexico State University, Department of Physics</td>
<td>Specific Heat of UCu${5.5}$Al${6.5}$ and UCu${5.75}$Al${6.25}$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Schmiedeshoff, G., Occidental College</td>
<td>Probing the Magnetic Field Induced Novel Phase in YbAgGe by Specific Heat</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Tozer, S.W., NHMFL</td>
<td>High Pressure Pulsed Magnetic Field Studies of the Lifshitz Transition in CeIn$_3$</td>
</tr>
</tbody>
</table>

Magnet Technology – 14 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASC</td>
<td>Larbalestier, D.C., NHMFL-FSU, ASC</td>
<td>Mechanical Decoupling of ReBCO Coated Conductors in High Field Coils Using Thin-Walled Heat-Shrink Tubing Insulation to Prevent Stress-Induced Damage</td>
</tr>
<tr>
<td>DC Field</td>
<td>Larbalestier, D.C., NHMFL</td>
<td>Layer Wound Superconducting Coil Generating 35.4 T Made from REBCO Coated Conductor</td>
</tr>
<tr>
<td>DC Field</td>
<td>Painter, T.A., NHMFL</td>
<td>Development of Modified Transverse Shims for Medium Homogeneity Resistive Magnets</td>
</tr>
<tr>
<td>DC Field</td>
<td>Weggel, R., Particle Beam Lasers</td>
<td>Tests of YBCO Double Pancake Coils in a Background Field of 20 T</td>
</tr>
<tr>
<td>MS & T</td>
<td>Bai, H., MST</td>
<td>Helium Gas Trapped in 32 T HTS Magnet</td>
</tr>
<tr>
<td>MS & T</td>
<td>Chen, J., NHMFL, MS&T</td>
<td>Structural Finite Element Analysis of the HZB Series Connected Hybrid Insert Housing Under Operating Conditions</td>
</tr>
<tr>
<td>MS & T</td>
<td>Dixon, I.R., NHMFL, MS&T</td>
<td>Nb$_3$Sn-Nb$_3$Sn Series Joint Qualification for the Series-Connected Hybrid Magnets</td>
</tr>
<tr>
<td>MS & T</td>
<td>Dixon, I.R., NHMFL, MS&T</td>
<td>Impedance Measurements on a CICC Model Coil for the National Science Foundation and Helmholtz Zentrum Berlin Series-Connected Hybrid Magnets</td>
</tr>
<tr>
<td>MS & T</td>
<td>Markiewicz, W.D., NHMFL/FSU</td>
<td>Insulation of Coated Conductors for High Field Magnet Applications</td>
</tr>
<tr>
<td>MS & T</td>
<td>Marshall, W.S., NHMFL, MS&T</td>
<td>Measurements of the Extent of Coil Degassing Prior to Epoxy Impregnation for the Series-Connected Hybrid Outsert Coils</td>
</tr>
<tr>
<td>MS & T</td>
<td>Weijers, H.W., NHMFL, MS&T</td>
<td>Computation of AC Losses in REBCO Coils of the 32T All-Superconducting Magnet</td>
</tr>
<tr>
<td>MS & T</td>
<td>Weijers, H.W., NHMFL, MS&T</td>
<td>HTS Current Lead Development for the NHMFL Series-Connected Hybrid</td>
</tr>
<tr>
<td>NMR</td>
<td>Brey, W.W., NHMFL</td>
<td>Improved NMR Field Mapping for Powered Magnets</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Tokunaga, M., ISSP, The University of Tokyo</td>
<td>Development of a Probe for the Measurements of the Magneto-Caloric Effects in Pulsed Fields</td>
</tr>
</tbody>
</table>
Magnetic Resonance Technique Development – 30 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Field</td>
<td>Brey, W., NHMFL</td>
<td>Reducing Temporal Field Fluctuations in Powered Magnets by Combining Inductive and NMR Measurements</td>
</tr>
<tr>
<td>EMR</td>
<td>Hill, S., NHMFL and FSU, Physics</td>
<td>Cavity Perturbation Technique: The Effects of Crystal Size on The EPR Spectra of Fe<sub>8</sub></td>
</tr>
<tr>
<td>ICR</td>
<td>Hendrickson, C.L., FSU, NHMFL, Chemistry</td>
<td>Predator Data Station: A Fast Data Acquisition System for Advanced FT-ICR MS Experiments</td>
</tr>
<tr>
<td>ICR</td>
<td>Hendrickson, C.L., FSU, NHMFL, Chemistry</td>
<td>Excitation of Radial Ion Motion in an rf-Only Multipole Ion Guide Immersed in a Strong Magnetic Field Gradient</td>
</tr>
<tr>
<td>ICR</td>
<td>Hendrickson, C.L., FSU, NHMFL, Chemistry</td>
<td>Coulombic Shielding During Ion Cyclotron Excitation in FT-ICR Mass Spectrometry</td>
</tr>
<tr>
<td>ICR</td>
<td>Hendrickson, C.L., FSU, NHMFL, Chemistry</td>
<td>Electrically Compensated Fourier Transform Ion Cyclotron Resonance Cell for Complex Mixture Mass Analysis</td>
</tr>
<tr>
<td>ICR</td>
<td>Hendrickson, C.L., FSU, NHMFL, Chemistry</td>
<td>A Novel 9.4 Tesla FTICR Mass Spectrometer with Improved Sensitivity, Mass Desolution, and Mass Range</td>
</tr>
<tr>
<td>ICR</td>
<td>Marshall, A.G., FSU, NHMFL, Chemistry</td>
<td>Parts-Per-Billion Fourier Transform Ion Cyclotron Resonance Mass Measurement Accuracy with a “Walking” Calibration Equation</td>
</tr>
<tr>
<td>ICR</td>
<td>Rodgers, R.P., FSU, NHMFL, Chemistry</td>
<td>Atmospheric Pressure Laser-Induced Acoustic Desorption Chemical Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for the Analysis of Complex Mixtures</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Edison, A.S., UF/NHMFL, Biochemistry & Molecular Biology</td>
<td>1.5-mm HTS Probe Design for 600 MHz NMR</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Long, J.R., University of Florida, Biochemistry/AMRIS</td>
<td>Development and Characterization of Proton Imaging Coils for Horizontal Bore Magnet Systems</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Magin, R.L., UIC, Bioengineering</td>
<td>Evidence of Changes in Gray/White Matter in Epileptic Rat Brain Using Fractional Order Diffusion Tensor Imaging (fDTI) at 17.6 T</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Mareci, T.H., UF, Biochemistry and Molecular Biology</td>
<td>Modulation of Cu-Sn Alloy Magnetic Susceptibility and Measurement Using MRI</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Ozarslan, E., NIH</td>
<td>Development of a New MRI Contrast Method; Temporal Scaling of Diffusion</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Stanisz, G.J., University of Toronto, Medical Biophysics</td>
<td>Oscillating and Pulsed Gradient Diffusion Magnetic Resonance Microscopy (MRM)</td>
</tr>
<tr>
<td>NMR</td>
<td>Amoureux, J.P., University of Lille-1</td>
<td>A Comparative Study of ¹H Homonuclear Decoupling Sequences at Ultra-Fast Magic-Angle Spinning</td>
</tr>
<tr>
<td>NMR</td>
<td>Brey, W.W., NHMFL</td>
<td>Simulations of the Electromagnetic Field in NMR Low-E Coils</td>
</tr>
<tr>
<td>NMR</td>
<td>Cross, T.A., NHMFL, CIMAR/NMR</td>
<td>Correlation Restraints from Oriented Sample Solid State NMR Applied for a Structure of an α-helical Membrane Protein, KdpF</td>
</tr>
<tr>
<td>NMR</td>
<td>Fu, R., NHMFL</td>
<td>High-Resolution Stray Field Imaging Probe for in situ Lithium Ion Battery Studies</td>
</tr>
<tr>
<td>NMR</td>
<td>Gan, Z., NHMFL</td>
<td>An Efficient Amplification Pulse Sequence for Measuring Chemical Shift Anisotropy Under Fast Magic-Angle Spinning</td>
</tr>
<tr>
<td>NMR</td>
<td>Gan, Z., NHMFL</td>
<td>Measurement of Chemical Shift Anisotropy for the Backbone Sites of U-¹²C, ¹⁵N-Enriched Proteins CSA Amplification</td>
</tr>
<tr>
<td>NMR</td>
<td>Gan, Z., NHMFL</td>
<td>Sensitivity-Enhancement Using the Carr-Purcell Meiboom-Gill Sequence for Separating ³²Se Magic-Angle Spinning Sidebands of Germanium Selenide Glasses</td>
</tr>
<tr>
<td>NMR</td>
<td>Gan, Z., NHMFL</td>
<td>Obtaining Isotropic NMR Spectra of Paramagnetic Battery Materials with Large Anisotropic Broadening</td>
</tr>
<tr>
<td>NMR</td>
<td>Gor'kov, P.L., NHMFL</td>
<td>Efficient Triple-Resonance MAS Probe for Biological Solid-State NMR at 900 MHz</td>
</tr>
<tr>
<td>NMR</td>
<td>Grant, S.C., NHMFL-FSU, Chemical & Biomedical Engineering</td>
<td>Gadolinium- and Dysprosium-Encapsulating Ultra-Short Single-Walled Carbon Nanotubes as Intracellular Labeling Agents for High Magnetic Fields</td>
</tr>
<tr>
<td>NMR</td>
<td>Mağın, R.L., U. Illinois - Chicago, Bioengineering</td>
<td>Field and Temperature Dependence of Parameters Extracted from Quantitative Magnetization Transfer Imaging at High B<sub>0</sub> Fields</td>
</tr>
<tr>
<td>NMR</td>
<td>Nezvorov, A.A., NCSU, Chemistry</td>
<td>Testing High-Power B<sub>0</sub> Fields for High-Resolution Separated Local Field Experiments in Oriented-Sample NMR</td>
</tr>
<tr>
<td>NMR</td>
<td>Van Sciver, S.W., NHMFL/FSU, Mechanical Engineering</td>
<td>MRI of Adsorbed Water in Solid Foams at 21.1 T</td>
</tr>
</tbody>
</table>
Magnetism & Magnetic Materials – 81 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulsed Field</td>
<td>Ayala-Valenzuela, O.E., LANL</td>
<td>Thermally Detected Electron Paramagnetic Resonance (TD-EPR)</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Ayala-Valenzuela, O.E., LANL</td>
<td>g-Factor Anisotropy Measurement in the Molecular Magnet ([\text{Cu(HF}_2\text{(pyz)}_2\text{)}\text{TaF}_6]) by Means of Thermally Detected Electron Paramagnetic Resonance (TD-EPR)</td>
</tr>
</tbody>
</table>

ASC Xin, Y., NHMFL/FSU, MST
- Atomic Structure and Electronic Structure of an AA’3B4O12 Double-Perovskite CaCu3Ir4O12 by STEM Imaging and EELS Techniques

CMT/E Bonesteel, N.E., FSU, Physics
- Scaling Analysis of Random Singlet Phase Formation

CMT/E Choi, E.S., NHMFL
- Magneto-electric Effect in NdCrTiO3

CMT/E Winter, L.E., NHMFL/FSU, Physics
- A Comparative Study of Mn1-xCo_xV2O9 Focusing on Dielectric and RF Measurements

DC Field Balicas, L., NHMFL
- High Field Magnetic Phase Diagram of Low Dimensional Spin Gap Compound PbV2O9

DC Field Beedle, C.C., NHMFL
- Photoluminescent Studies of Manganese Based Single-Molecule Magnets

DC Field Buetten, G., Center for Electronic Correlations and Magnetism, University of Augsburg, Germany
- NMR Experiments in the Antiferromagnetic S = 1/2 Chain Compound LiCuVO4

DC Field Choi, E.S., NHMFL
- Spin-Flop Transitions and Phase Diagrams of Antiferromagnet SrNdFeO4 Probed by Dielectric Constant Measurements

DC Field Dalal, N.S., FSU, Chemistry
- Probing the Magnetic Field Driven Ising Quantum Criticality of the Square-Lattice Cr(dien)(O2)2 H2O

DC Field Furis, M., University of Vermont, Physics
- Magnetic Circular Dichroism (MCD) of Copper Phthalocyanine Crystalline Thin Films in the Florida HELIX Magnet

DC Field Hoch, M.J.R., NHMFL
- Evolution of the Spin Structure with Temperature in the Extended kagome YBaCo4O7

DC Field Hong, T., Oak Ridge National Laboratory
- Wilson Ratio of a Tomonaga-Luttinger Liquid in a Spin-1/2 Heisenberg Ladder

DC Field Hosokoshi, Y., Osaka Prefecture University, Physical Science
- Calorimetric Study of Organic Triangular Antiferromagnets TNNCH3CN and TIMCH3CN in High Magnetic Fields

DC Field Jo, Y.J., Kyungpook National University, Physics
- Anisotropic Metamagnetism of Rare-Earth Tetraborides and Germanides

DC Field Kimura, T., Osaka University, Division of Materials Physics
- High-Magnetic-Field Effect on Interplay Between Sm and Mn Moments in SmMnO3

DC Field Lee, Y.S., MIT, Physics
- Specific Heat Measurement on an S=1/2 Kagome Antiferromagnet

DC Field McGill, S.M., Florida State University, NHMFL
- Spin-Lattice Coupling in Low-Dimensional Spin Dimer: SrCu2(BO3)2

DC Field Mitrovic, V.F., Brown University, Physics
- Effects of the Applied Magnetic Field Orientation on the Ground State of Cs,CuBr4

DC Field Shatruk, M., Florida State University, Department of Chemistry and Biochemistry
- High-field Studies of Anomalous Magnetism of La1–xRxCu2P2 (R = Pr, Nd) Phases

DC Field Shulyatev, D., MISIS, Moscow, Russia
- Investigation of \((\text{La}_{0.38}\text{Sr}_{0.62})\text{MnO}_3\) Single Crystals

DC Field Takano, Y., UF, Physics
- Magnetic Phase Diagram of the Spin-1/2 Triangular-Lattice Antiferromagnet Cs,CuCl3

DC Field Telser, J., Roosevelt University, Biological, Chemical and Physical Sciences
- HFEPR of Magnetic Materials with Unusual Optical Properties: YIn1–xMnxO3

DC Field Tsujii, H., Kanazawa University, Department of Physics, Faculty of Education
- Magnetic Phase Diagram of the Quasi-One Dimensional Antiferromagnet BaCo2V2O8

DC Field Zhou, H.D., NHMFL
- Magnetic Phase Diagram of a New Magnetic Triangular Lattice System

EMR Bonanni, A. (Alberta), Johannes Kepler Universität, Linz-Austria, Semiconductor and Solid State Physics
- Magnetic Resonances of Mn³⁺ in (Ga,Mn)N

EMR Brechin, E.K., U. Edinburgh, Chemistry
- High-Frequency EPR Studies of Molecular Magnets Based on Mn²⁺ Dimers

EMR Choi, K.-Y., Chung-Ang Univ.
- Spin Relaxations of Cu²⁺ doped Ca(P2O7)2 Glasses Studied by Pulsed EPR

EMR Hill, S., NHMFL and FSU, Physics
- Quantum Tunneling of Magnetization in Trigonal Single-Molecule Magnets
<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMR</td>
<td>Holmes, S.M., University of Missouri-St. Louis, Chemistry</td>
<td>EPR Studies of CN Bridged Fe${11}$Ni${10}$ Complexes and Their Mononuclear Fe7 Building-Blocks</td>
</tr>
<tr>
<td>EMR</td>
<td>Latturner, S.E., Florida State University, Chemistry</td>
<td>$\text{R}{13}\text{Fe}{15}\text{B}{18}\text{C}{26}$ ($\text{R} = \text{La, Ce}$) and $\text{R}{13}\text{Fe}{15}\text{B}{18}\text{C}{26}$ ($\text{R} = \text{Ce, Pr}$): Complex Intermetallics Featuring Borocarbide-capped Iron Clusters Grown from Rare-Earth/transition Metal Eutectic Fluxes</td>
</tr>
<tr>
<td>EMR</td>
<td>Lawes, G., Wayne State University, Physics and Astronomy</td>
<td>Mössbauer Studies on Multiferroic FeVO$_4$</td>
</tr>
<tr>
<td>EMR</td>
<td>Long, J.R., UC Berkeley, Chemistry</td>
<td>High-field EPR Studies of a Mononuclear Co3 Molecular Magnet</td>
</tr>
<tr>
<td>EMR</td>
<td>Long, J.R., UC Berkeley, Chemistry</td>
<td>High-frequency EPR studies of a ReZn chain</td>
</tr>
<tr>
<td>EMR</td>
<td>Pajerowski, D., NIST</td>
<td>EPR Investigations of Photomagnetic Effects in the Heterobimetallic Complex [Nd(DMF)$_4$(H$_2$O)$_3$(μ-NC)Fe(CN)$_5$] • H$_2$O</td>
</tr>
<tr>
<td>EMR</td>
<td>Yang, E.-C., Fu Jen Catholic University, Chemistry</td>
<td>EPR Study of Tetranuclear Terbium (III) and Gadolinium (III) Clusters</td>
</tr>
<tr>
<td>EMR</td>
<td>Yang, E.-C., Fu Jen University, Chemistry</td>
<td>EPR Studies of the Half-integer Spin ($S = 19/2$) Single-molecule Magnet Mn$6$6Mn${10}$-heamp</td>
</tr>
<tr>
<td>EMR</td>
<td>Zorko, A., Jožef Stefan Institute, Ljubljana, Slovenia</td>
<td>Spin Correlations in the Kagome Compound Kapellasite as Seen by ESR</td>
</tr>
<tr>
<td>EMR</td>
<td>Zvyagin, S.A., Dresden High Magnetic Field Laboratory (HLD), Helmholtz-Zentrum Dresden-Rossendorf (HZDR)</td>
<td>Two-Magnon Bound States in the Spin-1 AFM Chain System DTN: High-field ESR Studies</td>
</tr>
<tr>
<td>High B/T</td>
<td>Yin, L., University of Florida, Physics</td>
<td>Magneto-Electric Effect of the Bose-Glass Phase in NiCl${1.85}$Br${0.15}$-4SC(NH$_2$)$_2$ at Low Temperatures</td>
</tr>
<tr>
<td>High B/T</td>
<td>Yin, L., University of Florida</td>
<td>Magnetic Susceptibility Measurements of the Bose Glass Phase in NiCl${1.85}$Br${0.15}$-4SC(NH$_2$)$_2$ at Low Temperatures</td>
</tr>
<tr>
<td>AMRIS</td>
<td>Walter, G.A., University of Florida, Physiology</td>
<td>Magnetic/NIR Quantum Dots for Optical & MR Imaging</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Aygriou, D., Helmholtz-Zentrum Berlin fur Materialien und Energie</td>
<td>Investigation of the Role of Spin-Texture on the Electronic State in Sodium Cobaltate</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Canfield, P., Ames Lab and ISU Physics</td>
<td>Large Magnetoresistance in the Paramagnetic State of RPtBi (R = Gd and Lu)</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Cheong, S., Rutgers University, Physics</td>
<td>Specific Heat and Magnetization Measurements in RInO$_3$ (R = Eu and Dy)</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Correa, V.F., CNEA, Argentina</td>
<td>Magnetization at High Magnetic Fields in Gd${1.9}$Ca${1.1}$MnO$_3$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Daou, R., MPI, CPIS</td>
<td>Microstrain-Sensitivity Magnetostreiction of SrCu$_2$(BO$_3$)$_2$ to 97.4 Tesla</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Friedman, J.R., Amherst College, Physics</td>
<td>Speed of Sound in Single-Molecule Magnets</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Frontzek, M., ORNL</td>
<td>Multiferroic Behavior of CuCrO$_2$ in High Magnetic Fields</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Hoch, M.I.R., FSU, Physics</td>
<td>Spin-State Crystallization in LaCoO$_3$ in Magnetic Fields Approaching 100 Tesla</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Kamihara, Y.K., Keio University, Applied Physics and Physico-Informatics (APPI)</td>
<td>Schottky-Like Anomaly Observed in a Heavy Fermion Metal, La${0.3}$Ce${0.7}$FePO.</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Kim, K.H., Seoul National University, Physics and Astronomy</td>
<td>Thermodynamic Study of a Field-Induced Phase Transition in Multiferroic Ba$_2$CoGe$_2$O$_7$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Kondo, A., ISSP, University of Tokyo</td>
<td>Magnetoresistance and Magnetic Phase Diagram of CeOs2Al${12}$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Kondo, A., ISSP, University of Tokyo</td>
<td>Observation of the Shubnikov-de Haas Oscillations in CeRu4Al${10}$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Landee, C.P., Clark University</td>
<td>High field Specific Heat of S=1/2 Quasi 2D Antiferromagnet, Cu(C$_6$H$_5$N$_3$)$_2$(ClO$_4$)$_2$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Manson, J., Eastern Washington University, Chemistry and Biochemistry</td>
<td>Pulsed Field Magnetization and Electric Polarization Measurements of CoCl$_2$-2thiourea</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Manson, J., Eastern Washington University, Chemistry and Biochemistry</td>
<td>Specific Heat of CoCl$_2$-2thiourea and CoCl$_2$-4thiourea</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Manson, J., Eastern Washington University, Chemistry and Biochemistry</td>
<td>Temperature-Dependent Magnetization of Quasi-1D [Ni(HF)$_3$(3-Cly)$_3$]BF$_4$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Manson, J.L., Eastern Washington University, Chemistry and Biochemistry</td>
<td>Specific Heat Study of the Quasi-2D S = 1 Quantum Magnet NiBr$_2$(pyz)$_2$ (pyz = pyrazine)</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Manson, J.L., Eastern Washington University, Chemistry and Biochemistry</td>
<td>Specific Heat Study of the Quasi-1D S = 1 Quantum Magnet [Ni(HF)$_3$(3-Cly)$_3$]BF$_4$</td>
</tr>
</tbody>
</table>
APPENDIX B: RESEARCH REPORTS BY CATEGORY

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulsed Field</td>
<td>Manson, J.L., Eastern Washington University, Chemistry and Biochemistry</td>
<td>Temperature-Dependent Magnetization of the S = 1/2 Quasi-2D Quantum Magnet Ag(nic)$_2$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Manson, J.L., Eastern Washington University, Chemistry and Biochemistry</td>
<td>Pulsed-Field Magnetization of the S = 1 Antiferromagnet beta-[Ni(HF$_2$)(pyrazine)$_2$]PF$_6$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Manson, J.L., Eastern Washington University, Chemistry and Biochemistry</td>
<td>Pulsed-Field Magnetization of the S = 1 Quasi-1D Quantum Magnet [Ni(HF$_2$)(3-C(py)$_2$)]BF$_4$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Manson, J.L., Eastern Washington University, Chemistry</td>
<td>High-field Magnetization of the S = 1/2 Spiral Chain [Cu(pym)(H$_2$O)$_2$]SiF$_6$ Up to 85 T</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Manson, J.L., Eastern Washington University</td>
<td>Temperature- and Field-dependent Magnetization Studies of the 1D Zig-Zag Chain NiCl$_2$(H$_2$O)$_2$(pyzdo)</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Manson, J.L., Eastern Washington University</td>
<td>Anisotropic Specific Heat of S=1/2 Quasi-1D Antiferromagnet [Cu(N$_2$C$_4$H$_4$)(H$_2$O)$_2$]SiF$_6$H$_6$O</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Manson, J.L., EWU, Chemistry</td>
<td>EPR Measurements of [Cu(pym)(H$_2$O)$_2$]SiF$_6$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Mira, J., Universidade de Santiago de Compostela, Spain</td>
<td>Multiferroic Behavior in the New Double Perovskite Lu$_2$MnCoO$_6$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Paduan-Filho, A., U de Sao Paulo, Brazil</td>
<td>Bose-glass Phase at the Boundary of Bose-Einstein Condensates in Quantum Magnets</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Rivadulla, F., Universidade de Santiago de Compostela, Spain</td>
<td>Electrical Polarization and Magnetization Measurements in CdV$_2$O$_4$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Ronning, F., LANL</td>
<td>Fermi Surface of Ce,RhIn$_5$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Ronning, F., LANL</td>
<td>Fermi Surface in PtPt$_2$In$_3$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Ronning, F., LANL</td>
<td>Heat Capacity in CePt$_2$In$_3$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Rueegg, C., Paul Scherrer Institute, Laboratory for Neutron Scattering</td>
<td>Cascade of Field-Induced Phase Transitions in the Frustrated Spin-Gap System BiCu$_2$PO$_6$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Rueegg, C., PSI, LDM</td>
<td>High Field Magnetostriiction of Frustrated Spin Ladder System BiCu$_2$PO$_6$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Schlueter, J.A., ANL</td>
<td>High-Field Magnetization of the 1D CuBr$_2$(pyzO)(H$_2$O)$_2$ and 2D CuBr$_2$(pyz) up to 92 T</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Schuller, K., UC San Diego</td>
<td>Substrate-Controlled Ferromagnetism in Iron-Phthalocyanine Films Due to 1D Fe Chains</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Taylor, A., LANL, MPA-CINT</td>
<td>Magneto-electric Coupling in TbMnO$_3$ Thin Film</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Tokunaga, M., ISSP, The University of Tokyo</td>
<td>Magneto-Caloric Effect on LaCoO$_3$</td>
</tr>
<tr>
<td>UF Physics</td>
<td>Meisel, M.W., UF, Physics</td>
<td>Effects of Pressure on the Magnetic Properties of K$_4$Co$_3$[Fe(CN)$_6$]$_4$·mH$_2$O</td>
</tr>
<tr>
<td>UF Physics</td>
<td>Meisel, M.W., UF, Physics</td>
<td>Photomagnetic and Spin-Crossover Behavior of Fe(TPMA)(XBIM)$_2$</td>
</tr>
</tbody>
</table>

Molecular Conductors – 6 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Field</td>
<td>Brooks, J.S., NHMFL at Florida State University, Physics</td>
<td>Angular-Dependent Magnetothermopower in a Multiband Organic Conductor</td>
</tr>
<tr>
<td>DC Field</td>
<td>Brooks, J.S., NHMFL/FSU, Physics</td>
<td>Investigation of the Low-Dimensional Organic Conductor Per2[Pt(mnt)2]</td>
</tr>
<tr>
<td>DC Field</td>
<td>Kang, W., Ewha Womans University, Physics</td>
<td>High Field Behavior of Kartsovnik-Kajita-Yamaji Resonance Peaks and the Coherence Peak of Quasi-Two-Dimensional Electrons</td>
</tr>
<tr>
<td>DC Field</td>
<td>Maesato, M., Kyoto University, Chemistry</td>
<td>Investigation of FISDW in the p-d Hybrid Q1D Magnetic Conductor</td>
</tr>
<tr>
<td>DC Field</td>
<td>Park, Y.W., Seoul National University, Department of Physics and Astronomy</td>
<td>Distinctive Magneto Conductance of One-Dimensional Polymer Nanofibers</td>
</tr>
<tr>
<td>DC Field</td>
<td>Uji, S., National Institute for Materials Science</td>
<td>Fermi Surfaces of Two Dimensional p-d Systems, k-(BDH-TTP)$_2$FeX$_4$ (X=Br and Cl)</td>
</tr>
</tbody>
</table>
Other Condensed Matter – 27 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMT/E</td>
<td>Brooks, J.S., NHMFL, Physics</td>
<td>Chemical Pressure Effects on Structural, Magnetic, and Transport Properties of Mn$_{1-x}$Co$_x$V$_2$O$_4$</td>
</tr>
<tr>
<td>CMT/E</td>
<td>Dobrosavljevic, V., NHMFL, Physics</td>
<td>Nearly Frozen Coulomb Liquids</td>
</tr>
<tr>
<td>CMT/E</td>
<td>Gor’kov, L.P., FSU, NHMFL</td>
<td>Strong Electron-Phonon Interactions and Polaronic Effects in Compounds with Transition-Metals-Atoms</td>
</tr>
<tr>
<td>CMT/E</td>
<td>Rikvold, P.A., FSU, Physics</td>
<td>Computational Materials Science and Statistical Mechanics</td>
</tr>
<tr>
<td>DC Field</td>
<td>Behnia, K., ESPCI, LPEM</td>
<td>Angle-Dependent Nernst Effect in Bismuth Up to 45 T</td>
</tr>
<tr>
<td>DC Field</td>
<td>Birge, N.O., Michigan State University, Physics and Astronomy</td>
<td>Magneto-Transport Measurements of Topological Insulator Epitaxial Thin Films</td>
</tr>
<tr>
<td>DC Field</td>
<td>Chen, Y.P., Purdue University, Physics and ECE</td>
<td>Magneto-Transport in Bi$_2$Se$_3$: Shubnikov-de Haas Oscillation and Quantum Hall Effect</td>
</tr>
<tr>
<td>DC Field</td>
<td>Gleeson, J.T., Kent State University</td>
<td>High Field Magneto-Optical Studies of Liquid Crystals and Complex Fluids</td>
</tr>
<tr>
<td>DC Field</td>
<td>Goldhaber-Gordon, D., Stanford Univ., Physics</td>
<td>Electrolyte Gate-Controlled Kondo Effect in SrTiO$_3$</td>
</tr>
<tr>
<td>DC Field</td>
<td>Hussey, N.E., University of Bristol, Physics</td>
<td>Anomalous Magnetoresistance in the Quasi-One-Dimensional Conductor Li$_{0.9}$Mo6O${17}$</td>
</tr>
<tr>
<td>DC Field</td>
<td>Jarillo-Herrero, P., Massachusetts Institute of Technology, Physics</td>
<td>Quantum Transport in Density-Controlled Topological Insulator Devices</td>
</tr>
<tr>
<td>DC Field</td>
<td>Khodaparast, G., Virginia Tech</td>
<td>Time Resolved Magneto-Photoluminescence in Er3Ni@C80 Metallofullerenes</td>
</tr>
<tr>
<td>DC Field</td>
<td>Kim, J.S., POSTECH, Physics</td>
<td>Dirac Fermions in a Bi Square Net in SrMnBi$_2$ Single Crystals</td>
</tr>
<tr>
<td>DC Field</td>
<td>Kono, J., Rice University, Electrical and Computer Engineering</td>
<td>Magneto-Absorption Spectroscopy of Armchair-Enriched, Carbon Nanotube Aqueous Suspensions with the Split-Helix Magnet</td>
</tr>
<tr>
<td>DC Field</td>
<td>Levy, J., University of Pittsburgh, Physics & Astronomy</td>
<td>Quantum Transport in Nanostructures at the Interface of LaAlO$_3$/SrTiO$_3$</td>
</tr>
<tr>
<td>DC Field</td>
<td>Li, L., University of Michigan</td>
<td>Coexistence of Magnetism and Two-Dimensional Superconductivity at Oxide Interface</td>
</tr>
<tr>
<td>DC Field</td>
<td>Murphy, S.Q., University of Oklahoma, Physics</td>
<td>Search for Semi-Metal to Insulator Transition in Quantum Confined Sb Films</td>
</tr>
<tr>
<td>DC Field</td>
<td>Musfeldt, J.L., University of Tennessee, Chemistry</td>
<td>Magnetoelectric Coupling in α-Fe$_2$O$_3$ Amplified by Collective Transition</td>
</tr>
<tr>
<td>DC Field</td>
<td>Ong, N.P., Princeton University, Physics</td>
<td>High-field Shubnikov de Haas Oscillations in the Topological Insulator Bi$_2$Te$_2$Se</td>
</tr>
<tr>
<td>DC Field</td>
<td>Petrovic, C., Brookhaven National Laboratory, Condensed Matter and Materials Science</td>
<td>Quantum Transport of Two-Dimensional (2D) Dirac Fermions in SrMnBi$_2$</td>
</tr>
<tr>
<td>DC Field</td>
<td>Smirnov, D., NHMFL</td>
<td>Temperature Dependence of Raman-Active Phonons in Bi$_2$Se$_3$ and Sb$_2$Te$_3$</td>
</tr>
<tr>
<td>DC Field</td>
<td>Warusawithana, M.P., FSU/NHMFL, Dept. of Physics</td>
<td>Signatures of Two-Dimensional Conductivity at Oxide Interfaces</td>
</tr>
<tr>
<td>DC Field</td>
<td>Zhang, C., Peking University, International Center for Quantum Materials</td>
<td>Coexistence of Bulk and Surface Shubnikov-de Hass Oscillations in Bi$_2$Se$_3$</td>
</tr>
<tr>
<td>NMR</td>
<td>Saam, B., University of Utah, Physics and Astronomy</td>
<td>Investigations of Microscopic Chaos in CaF2 NMR Lineshapes</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Hellman, F., University of California - Berkeley, Department of Physics</td>
<td>Dielectric Breakdown Voltage and Capacitance Measurements on Relaxor Ferroelectrics</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Hwang, H., Stanford</td>
<td>Angle Dependent Magneto-Transport in 2D 0.1% δ-doped STO</td>
</tr>
</tbody>
</table>
Quantum Fluids & Solids – 7 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMT/E</td>
<td>Yang, K., NHMFL</td>
<td>Theoretical Studies of Quantum Hall Liquids and Other Topological States of Matter</td>
</tr>
<tr>
<td>High B/T</td>
<td>Sullivan, N.S., University of Florida, Physics</td>
<td>NMR Relaxation Times of HD Molecules Trapped in the Cages of a Metal Organic Framework</td>
</tr>
<tr>
<td>High B/T</td>
<td>Sullivan, N.S., University of Florida, Physics</td>
<td>Theory Nuclear Spin-Lattice Relaxation of 3He Impurities in Solid 4He</td>
</tr>
<tr>
<td>High B/T</td>
<td>Sullivan, N.S., University of Florida, Physics</td>
<td>Anomalous Dynamics of Solid 4He at Low Temperatures: Analysis of NMR Studies</td>
</tr>
<tr>
<td>High B/T</td>
<td>Yin, L., University of Florida, Physics</td>
<td>Precision Measurements of the Dielectric Constant of Solid 4He at Low Temperatures</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Shekhter, A., LANL, NHMFL, Pulsed Field Facility</td>
<td>Resonant Ultrasound Measurements on Single Crystal Hg1201 Cuprate</td>
</tr>
</tbody>
</table>

Qubits and Quantum Entanglement – 8 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMT/E</td>
<td>Vafek, O., NHMFL</td>
<td>Quantum Hall Effect in a Singly and Doubly Connected Three-Dimensional Topological Insulator</td>
</tr>
<tr>
<td>DC Field</td>
<td>Bokor, J., University of California, Berkeley</td>
<td>Engineering CMOS-Compatible Quantum Dot Qubits for Local and Non-Local On-Chip Quantum Communication</td>
</tr>
<tr>
<td>EMR</td>
<td>Chiorescu, I., NHMFL</td>
<td>Tunable Multi-photon Rabi Oscillations in an Electronic Spin System</td>
</tr>
<tr>
<td>EMR</td>
<td>Chiorescu, I., NHMFL</td>
<td>Multi-photon Rabi Oscillations in High Spin Paramagnetic Impurity</td>
</tr>
<tr>
<td>EMR</td>
<td>Choi, K.-Y., Chung-Ang Univ.</td>
<td>Coherent Manipulation of Electron Spins in the $(Cu_x):NS$ Spin Triangle Complex</td>
</tr>
<tr>
<td>EMR</td>
<td>Coronado, E., University of Valencia, Chemistry</td>
<td>Mitigation of Decoherence in Holmium Polyoxometalate Single-molecule Magnets</td>
</tr>
<tr>
<td>EMR</td>
<td>Schenkel, T., Lawrence Berkeley National Laboratory</td>
<td>Electrical Detection of Magnetic Resonance in Silicon MOSFETs at High Magnetic Fields</td>
</tr>
</tbody>
</table>

Semiconductors – 25 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMT/E</td>
<td>Brooks, J.S., NHMFL at Florida State University, Physics</td>
<td>Fabrication and Characterization of Silk-Based Organic Thin Film Transistor</td>
</tr>
<tr>
<td>CMT/E</td>
<td>Jiang, Z., Georgia Institute of Technology, School of Physics</td>
<td>Thermal Expansion Coefficients of Bi$_2$Se$_3$ and Sb$_2$Te$_3$ Crystals</td>
</tr>
<tr>
<td>CMT/E</td>
<td>Popovic, D., NHMFL, FSU, Physics</td>
<td>Non-Gaussian Conductance Noise in a Strongly Disordered 2D Electron System in Si</td>
</tr>
<tr>
<td>DC Field</td>
<td>Drichko, I.L., A.F. Ioffe Physicotechnical Institute</td>
<td>Acoustic Studies of AC Conductivity Mechanisms in n-GaAs/AlGaAs in the Integer and Fractional Quantum Hall Effect Regime</td>
</tr>
<tr>
<td>DC Field</td>
<td>Du, R.-R., Rice University, Physics and Astronomy</td>
<td>Quantum Spin Hall Effect in InAs/GaSb Quantum Wells</td>
</tr>
<tr>
<td>DC Field</td>
<td>Engel, L.W., NHMFL</td>
<td>Microwave Spectroscopy of 2D Electron Systems with Controlled Alloy Disorder</td>
</tr>
<tr>
<td>DC Field</td>
<td>Gervais, G., McGill University</td>
<td>High Magnetic Field Measurement of Single Intrinsic InN Nanowires</td>
</tr>
<tr>
<td>DC Field</td>
<td>Jaroszynski, J., NHMFL</td>
<td>Quantum Hall Ferromagnet at Crossing of Spin Subbands of the Lowest Landau Level</td>
</tr>
<tr>
<td>DC Field</td>
<td>Kono, J., Rice University</td>
<td>Time-Resolved Evidence for Superfluorescent Radiation from Quantum Wells in Strong Magnetic Fields</td>
</tr>
<tr>
<td>DC Field</td>
<td>Pusep, Y.A., Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo</td>
<td>Magneto-optical Probe of Quantum Hall States in a Wide Parabolic Well Modulated by Random Potential</td>
</tr>
<tr>
<td>DC Field</td>
<td>Schneyders, H.S., Grand Valley State University, Physics</td>
<td>Magnetoresistance Measurement in a Quantifiable N-Type/P-Type Composite</td>
</tr>
<tr>
<td>DC Field</td>
<td>Shayegan, M., Princeton University, Dept. Electrical engineering</td>
<td>Anomalous Robustness of the $nu = 5/2$ Fractional Quantum Hall Effect Near a Sharp Phase Boundary</td>
</tr>
</tbody>
</table>
Superconductivity Applied – 17 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASC</td>
<td>Hellstrom, E.E., ASC - NHMFL</td>
<td>High Critical Current Density in Superconducting Ba-122 Ferro-Pnictide Wires</td>
</tr>
<tr>
<td>ASC</td>
<td>Larbalestier, D.C., NHMFL-FSU, ASC</td>
<td>Doubled Critical Current Density in Bi-2212 Wires by Reduction of Gas Bubble Density</td>
</tr>
<tr>
<td>ASC</td>
<td>Larbalestier, D.C., ASC - NHMFL</td>
<td>Quantitative Metallographic Deconstruction of SULTAN-Tested ITER CICC and Evidence for Bending-Strain Induced Filament Cracking Under Cyclic Loading</td>
</tr>
<tr>
<td>ASC</td>
<td>Larbalestier, D.C., ASC - NHMFL</td>
<td>The Study of Anisotropy and Industrial Defects in YBCO Coated Conductors Under In-Plane Reversible Strain</td>
</tr>
<tr>
<td>ASC</td>
<td>Larbalestier, D.C., ASC - NHMFL</td>
<td>Bubbles as a Major Current Obstacle in Bi2212 Round Wires – Understanding and Reduction of Bubbles</td>
</tr>
<tr>
<td>ASC</td>
<td>Larbalestier, D.C., ASC - NHMFL</td>
<td>a-Axis Grains as Important Current-Limiting Defects in State-of-the-Art REBCO Coated Conductor</td>
</tr>
<tr>
<td>ASC</td>
<td>Larbalestier, D.C., ASC-NHMFL, FSU</td>
<td>Tc Distribution in Nb,Sn Wires Determined by Specific Heat Measurements</td>
</tr>
<tr>
<td>ASC</td>
<td>Larbalestier, D.C., ASC-NHMFL</td>
<td>Angular Dependence of Jc at Elevated Temperatures</td>
</tr>
<tr>
<td>ASC</td>
<td>Lee, P.J., ASC - NHMFL</td>
<td>Understanding of Suppressed Superconductivity on the Surface of Superconducting RF Quality Niobium for Particle Accelerating Cavities</td>
</tr>
<tr>
<td>DC Field</td>
<td>Cardwell, D., University of Cambridge, Engineering</td>
<td>Extremely High Flux Pinning Force in Single Grain RE-Ba-Cu-O Bulk Superconductors Containing Nano-Scale Pinning Centers</td>
</tr>
<tr>
<td>DC Field</td>
<td>Chiesa, L., Tufts University, Mechanical Eng</td>
<td>Characterization of Superconducting Bronze Wires Under Pure Bending Load</td>
</tr>
<tr>
<td>DC Field</td>
<td>Christen, D.K., ORNL</td>
<td>Anisotropy of the Irreversibility Field for REBCO Thin Films Up to 45T</td>
</tr>
<tr>
<td>DC Field</td>
<td>Jaroszynski, J., NHMFL</td>
<td>Angular Dependence of Irreversibility Field for YBCO Thin Films with Controlled Pinning Defects at Very High Magnetic Fields</td>
</tr>
<tr>
<td>DC Field</td>
<td>van der Laan, D.C., National Institute of Standards and Technology</td>
<td>Critical Current Measurement at 4.2 K Up to 20 T of REBa2Cu3O7-d Coated Conductor Cables Designed for High-Field Magnet Applications</td>
</tr>
<tr>
<td>MS & T</td>
<td>Walsh, R.P., NHMFL, MS&T</td>
<td>Physical, Electrical, and Mechanical Properties of Contemporary YBCO Conductors for the 32 T Superconducting Magnet Design</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Ayala-Valenzuela, O.E., LANL</td>
<td>Optimization of ENABLE Growth Conditions of NbN Films for Superconducting Nanowire Single Photon Detectors</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Bulmer, J., HyperTech Inc.</td>
<td>Response of YBCO to Subcritical, Injected DC Current and 4MT/s Pulsed Magnetic Field</td>
</tr>
</tbody>
</table>
Superconductivity Basics – 33 Reports

<table>
<thead>
<tr>
<th>Facility</th>
<th>PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMT/E</td>
<td>Popovic, D., NHMFL, FSU, Physics</td>
<td>Dynamic Charge Order and Superconductivity in Lightly Doped La$_2$–xSr$_x$CuO$_4$ Thin Films</td>
</tr>
<tr>
<td>DC Field</td>
<td>Boebinger, G.S., NHMFL</td>
<td>Search For Reentrance or Enhancement of Superconductivity in 2D Cuprate Interfaces</td>
</tr>
<tr>
<td>DC Field</td>
<td>Bozovic, I., Brookhaven National Laboratory</td>
<td>Magnetotransport in La$_2$–xSr$_x$CuO$_4$ Grown via Molecular Beam Epitaxy</td>
</tr>
<tr>
<td>DC Field</td>
<td>Coldea, A.I., Oxford University, Physics</td>
<td>Quantum Oscillations in the 111 Iron Pnictide Superconductors: LiFeAs and LiFeP</td>
</tr>
<tr>
<td>DC Field</td>
<td>Fisher, I.R., Stanford University</td>
<td>High Magnetic Field Studies of Iron Arsenide Superconductor</td>
</tr>
<tr>
<td>DC Field</td>
<td>Greven, M., University of Minnesota, School of Physics and Astronomy</td>
<td>High Field Specific Heat of HgBa$_2$CuO$_4$-d</td>
</tr>
<tr>
<td>DC Field</td>
<td>Gurevich, A., Old Dominion University</td>
<td>Anomalous Irreversibility in the Superconducting State of LiFeAs</td>
</tr>
<tr>
<td>DC Field</td>
<td>Halperin, W.P., Northwestern University, Physics and Astronomy</td>
<td>Spin Density Wave Near the Vortex Cores of Bi$_2$SrCuO$_4$-d</td>
</tr>
<tr>
<td>DC Field</td>
<td>Halperin, W.P., Northwestern University, Physics and Astronomy</td>
<td>Field Dependence of Spin Lattice Relaxation Rate in Ba${0.6}$K${0.4}$Fe$_2$As$_2$ in High Magnetic Field</td>
</tr>
<tr>
<td>DC Field</td>
<td>Kartsovnik, M.V., Walther-Meissner-Institute</td>
<td>Classical and Quantum Oscillations in the Magnetoresistance of e-doped Nd$_{2-x}$Ce$_x$CuO$_4$</td>
</tr>
<tr>
<td>DC Field</td>
<td>Kim, K.H., Seoul National University, Department of Physics and Astronomy</td>
<td>Upper Critical Behavior of Optimally Doped Sr(Fe,Ni)$_2$As$_2$ Superconductor</td>
</tr>
<tr>
<td>DC Field</td>
<td>Nikolo, M., St. Louis University, Physics</td>
<td>Magnetic Flux Pinning Properties of the Iron-Pnictide Superconductors Ba(Fe${0.9}$,Co${0.1}$)2As2, Ba(Fe${0.8}$Co${0.2}$)2As2, and Ba(Fe${0.8}$Co${0.2}$)$_2$As$_2$</td>
</tr>
<tr>
<td>DC Field</td>
<td>Popovic, D., NHMFL, FSU, Physics</td>
<td>Magnetic-Field-Driven Superconductor-Insulator Transition in Underdoped La$_{2-x}$Sr$_x$CuO$_4$</td>
</tr>
<tr>
<td>DC Field</td>
<td>Sebastian, S.E., University of Cambridge, Physics</td>
<td>Chemical Potential Oscillations Reveal Single Fermi Surface Pocket in Underdoped Cuprates</td>
</tr>
<tr>
<td>DC Field</td>
<td>Stewart, G.R., UF Physics</td>
<td>Low Temperature Specific Heat vs. Field of Fe Pnictide Superconductors–Nodal or Not?</td>
</tr>
<tr>
<td>DC Field</td>
<td>Taillefer, L., Université de Sherbrooke, Physics</td>
<td>Quantum Oscillations in the Thermoelectric Properties of YBa$_2$Cu3O${6+δ}$</td>
</tr>
<tr>
<td>DC Field</td>
<td>Tozer, S.W., NHMFL</td>
<td>Fermi Surface of BaFe$_2$As$_2$, Under Pressure in the Reconstructed State</td>
</tr>
<tr>
<td>DC Field</td>
<td>Tranquada, J.M., Brookhaven National Laboratory</td>
<td>Superconductivity and Competing Order in La${0.6}$Ba${0.4}$CuO$_4$</td>
</tr>
<tr>
<td>DC Field</td>
<td>Xi, X., University of Florida, Department of Physics</td>
<td>Critical Fields and Critical Temperature of Type-II Superconducting Thin Films</td>
</tr>
<tr>
<td>DC Field</td>
<td>Zheng, G.Q., Okayama University, Physics</td>
<td>High-Field NMR Study of the Pseudogap Ground State in High-Tc Copper-Oxides</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Batlogg, B., ETH Zurich, Switzerland</td>
<td>Quantum Oscillations of the Superconductor LaRu$_2$P$_2$: Comparable mass enhancement λ ~ 1 in Ru and Fe phosphides</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Canfield, P., Ames Lab and ISU Physics</td>
<td>Anisotropic H$c2$ Measurement on the K${0.4}$Fe$_{1.6}$Se$_2$ Superconductor</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Canfield, P., Ames Lab and ISU Physics</td>
<td>Upper Critical Fields and Two-Band Superconductivity in Sr1Eu${y}$(Fe${0.8}$Co${0.2}$)$_2$As$_2$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Canfield, P., Ames Lab and ISU Physics</td>
<td>Investigation of Anisotropic H$_c2$ in Co-Doped BaFe$_2$As$_2$ Compounds</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Cava, R., Princeton University, Chemistry</td>
<td>Anisotropic H$c2$ Determined Up to 92 T and the Signature of Two-Band Superconductivity in Ca${0.5}$(Pt${0.5}$As)2((Fe${0.5}$P)${1.5}$)$_2$ Superconductor</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Harrison, N., Los Alamos National Laboratory</td>
<td>Multiple Quantum Oscillation Frequencies from Nodal Pocket in Underdoped Cuprates</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Larbalestier, D.C., ASC-NHMFL, FSU</td>
<td>Upper Critical Field Enhanced by Doping and Strain in Fe-Based Superconductors</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Marcenat, C., CEA-Grenoble, INAC</td>
<td>Scaling Properties of Magnetotransport at the Quantum Critical Point in BaFe2(As${0.9}$P$_{0.1}$)$_2$</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Moll, P., Laboratory for Solid State Physics, ETH Zurich, Switzerland</td>
<td>Superconducting Critical Current Measurements in Pulsed Magnets</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Serquis, A., Centro Atómico Bariloche, CNEA; Instituto Balseiro, UNCuyo; CONICET, Bariloche, Argentina)</td>
<td>Mg-B Site Doping Effects on the Upper Critical Field Temperature Dependence of MgB$_2$ Samples with CaCO$_3$ Additions</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Shekhter, A., LANL, Pulsed Field Facility</td>
<td>Resonant Ultrasound Spectroscopy (RUS) Measurements on Ultra-High Quality Underdoped YBCO Single Crystal Cuprates: Design of the RUS probe for samples in the sub-milligram mass range</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Shekhter, A., LANL, Pulsed Field Facility</td>
<td>Resonant Ultrasound Measurements on Single Crystal Hg$_{1201}$ Cuprate</td>
</tr>
<tr>
<td>Pulsed Field</td>
<td>Yuan, H., Zhejiang University, Physics, China</td>
<td>Upper Critical Field and Thermally Activated Flux Flow in Tl${0.58}$Rb${0.42}$Fe$_{1.72}$Se$_2$</td>
</tr>
</tbody>
</table>
APPENDIX C

Publications & Activities Index

A
Aboud, K.A. 40, 134, 136
Abernathy, C. 165
Abichou, T. 128
Abou Hamad, I. 128, 132
Abraimov, D. 139, 143, 153
Adkins, T. 128
Adriano, C. 139
Affinito, L. 143
Ailion, M. 135
Ajedini, R. 133, 137
Akimitsu, J. 129, 140
Aksel, E. 128
Akutagawa, S. 129, 140
Alamo, R.G. 134, 137, 138, 142, 150, 161, 214
Alborn, H.T. 132, 133, 137
Al-Hassanieh, K. 133
Allegretti, A. 138
Allenson, S.J. 42, 133, 144, 147
Allen, T.L. 41, 131
Almeida, M. 131, 138, 144, 145
Almorka-Barrios, N. 134
Al-Oweini, R. 128
AlTarawneh, M.M. 18, 128, 136
Alzapedi, L. 138
Amjad, A. 134
Amoureux, J.P. 217
Andersen, B.M. 128, 129
Anderson-Wile, A.M. 137
Andraka, B. 128, 139, 165
Andrej, E.Y. 215
Andrej, P. 160
Andrews, A.B. 42, 133
Andrus, M.J. 136
Angrerhofer, A. 132, 135, 136, 139, 165, 209
An, L. 214
An, L.N. 137
Anton, S.D. 150
Arakaki, X. 131, 145
Arcon, D. 76, 132
Argyriou, D. 219
Arson, M. 120
Arthur, M. 137
Asano, M. 128
Asgari, S. 88
Ashoori, R.C. 25, 134
Asomaning, S. 135, 212
Astory, G.W. 129, 136, 141, 157
Asztalos, S.J. 128
Atkins, B.M. 151
Atolila, E. 42, 133, 141, 149, 156
Augieri, A. 129
Avei, R. 129
Awschalom, D. 120
Ayala-Valenzuela, O.E. 133, 218, 219, 223
Aykol, M. 128

B
Baek, S.H. 141
Bai, H. 112, 128, 129, 141, 216
Baily, S.A. 135
Baird, M. 150
Balakirev, F.F. 63, 128, 137, 139, 140
Balatsky, A.V. 128
Baldwin, K.W. 28, 65, 134, 136
Balicas, L.M. 128, 129, 131, 134, 136, 140, 141, 157, 218
Balkanski, Y. 132
Bailou, R. 76, 141
Bandara, S. 138
Banerjee, S.K. 133, 158
Baney, R. 158
Bao, Q.J. 135
Bao, W. 128, 158
Bargmann, C.I. 135
Bark, C.W. 134, 140-142
Barlas, Y. 128, 142
Barrat, J.-A. 154
Barré, L. 154
Barrera, D. 154
Barrett, R. 142
Barrios, M. 47, 157
Barron, E.J. 120
Barsukova-Stuckart, M. 128
Basov, D. 120
Bassil, B.S. 128
Batista, C.D. 18, 133, 140
Batista, E.R. 130
Batlogg, B. 63, 140, 224
Bauer, A. 135
Bauer, E.D. 128, 216
Bauer, M. 139
Bauer, S. 132
Baxter, M.K. 130, 141-143
Beck, B. 71
Beecham, T.E. 13, 134
Behnia, K. 130, 221
Belenky, G. 138
Bellingeri, E. 139
Belyani, A.A. 27
Bembridge, N.G. 157
Bendix, O.J. 135
Benfatto, L. 137
Bengtsson, N.E. 72, 128, 138
Benjamin, D. 158
Benjamin, M. 136
Bennett, J. 136
Berger, H. 132
Berke, D.M. 141, 143
Bertain, S. 128
Berthier, C. 129
Besara, T. 128, 142, 157
Betts, J.B. 18, 129, 137, 138
Beu, S.C. 128, 137, 142, 147, 150, 153
Bhargava, S.C. 133
Bhattacharyya, R. 138
Bhatt, R.N. 132
Bhupathi, B. 131
Bianchi, A.D. 128
Biboum, R.N. 128
Bickerton, G. 145
Biegalski, M.D. 134
Bienkiewicz, E.A. 211
Bienko, A. 140
Biggs, J.S. 39, 137
Bildsee, H. 132
Bingol, K. 129
Binkley, J. 146
Bird, M.D. 82, 112, 120, 128, 129, 141-143, 152
Birge, N.O. 221
Bish, L.T. 129
Biskup, N. 140
Biswas, S. 72, 138
Bittar, E.M. 139
Bizimis, M. 147
Bjarkam, C.R. 73, 139
Blackband, S.J. 72, 73, 130, 131, 139, 165, 211
Blakney, G.T. 129, 133, 135, 137, 141, 148, 152, 153
Dabrowska, H.A. 17, 63
Dackow, J. 129, 138
Dafoe, N.J. 132, 137
Dai, Y. 158
Dalal, N.S. 40, 128, 136, 137, 139, 140-142, 151-153, 157, 158, 212, 213, 218
Dalban-Canassy, M. 35, 91, 93, 139, 143, 152, 156
D'Alessandro, M.A. 130
Dalton, B. 82
Daniels, M.R. 140
Danielson, L. 149
Dao, A.E. 142, 143, 153
Dao, R. 17, 63, 134, 219
Darkazalli, A. 150
Dasbistas, K. 131
Das, K.C. 146
Das, N. 143
Daszkiewicz, M. 140, 153
Datta, S. 131
Davulcu, V. 130
Davies, G.W. 137
De Angelis, A.A. 130, 141-143
Dechaine, G. 154
del Barco, E. 132, 134, 137, 141
Del Castillo, T.J. 40, 136
de Leeuw, N.H. 134
della Corte, A. 129, 143
Del Sesto, R.E. 135
Deng, T. 130, 153, 154
Dentener, F. 132
Deskins, W.R. 130
deSwiet, T.M. 149
Devred, A. 98
Diacou, C.V. 130
Dickerson, J.H. 132
Dick, H.J.B. 44, 147
Dickson, D.W. 55, 130, 144
Diederich, J. 158
Diehl, T. 132
Dilley, N. 133
Dimov, D. 138
Dinse, K.-P. 212
Doraiswamy, V. 137-139, 143, 149, 152, 156, 158, 162, 221
Doezema, R.E. 131
Doherty, R. 88
Doiron-Leyraud, N. 30, 134
Dolgov, O.V. 130
Dong, H. 143, 150
Doorn, S.K. 130, 223
Dordevic, S.V. 160
Dorn, H.C. 129
Dossey, A.T. 131, 144, 156, 157
Doshi, M. 72
dos Santos, A. 129
Dossey, A.T. 137, 209
Dotson, V.M. 150
Douglas, J.F. 139
Downs, W. 140
Drahun, M.D. 158
Drapier, J. 88
Drichko, I.L. 130, 144, 150, 151, 155, 222
Dumont, M.F. 130, 136
Dumont, M. 157
Duque, J.G. 130
Durak, O. 133
Dub, R.R. 158, 222
du, R.R. 133
Durrell, J.H. 130
Du, X. 214, 215
dvoretzky, S.A. 140, 151, 153-155
Dvoyashkin, M. 130, 144
Dziadek, J. 137

E
Earley, L.F. 156
Easter, R. 132
Eberlin, M.N. 142
E. Chekmenev 69
Edirisooriya, M. 131
Edison, A. 105, 106, 107, 113, 119, 120
Edison, A.S. 10, 72, 73, 133, 137, 138, 149, 160, 166, 211, 217
Edmiston, H.L. 136
Edwards, A. 129
Efremov, D.V. 130
Ehrenberg, H. 132
Eichel, R.A. 128, 132, 158
Eisenmesser, E. Z. 210
El-Danaf, E. 88
Elmquist, R. 138
Elumalai, M. 71, 148, 160
Emmett, M.R. 129, 131, 140-142, 144, 146-154
Enachescu, C. 136
Engel, L.W. 118, 144, 147, 148, 162, 222
Engen, J.R. 133
England, O. 138, 150
Eom, C.B. 130, 134, 140, 141, 142
Eom, M.J. 136
Epstein, A.J. 159
APPENDIX C: PUBLICATIONS & ACTIVITIES INDEX

Erb, A. 147
Erdem, E. 128, 132
Eruenel, E. 158
Esadze, A. 130
Eyler, J.R. 166
Eyssautier, J. 154

F
Facemye, R.K.C. 139
Fahman, B. 145
Fahmy, A.F. 133
Fairhurst, B.P. 117, 162
Fajer, P.G. 129, 139, 142, 209
Falkowski, J.M. 40, 136
Fanelli V.R. 138
Fang, P. 130, 154
Fanucci, G.E. 10, 119, 136, 157, 166, 209, 210
Farhan, M.A. 136
Farrell, J. 82
Farver, R.S. 157
Fauque, Z.Z. 130
Febo, M. 130
Fedetchkine, S. 142
Feng, P.L. 134
Ferdeghini, C. 139
Ferentinos, E. 158
Fernandez-Blazquez, J.P. 137
Ferrar, V. 130
Fesmire, J. 47
Fetjinger, J. 140
Fey, M. 73
Field, M.B. 134
Filmore, D. 132
Fisbie, C.D. 134
Fisher, C. 141
Fisher, I.R. 158, 224
Fisk, Z. 128
Fitzgerald, D.B. 130
Flegal, A.R. 130
Fletcher, S. 72
Flint, J.J. 73, 131
Flynn, L. 130
Fokt, I. 144, 153
Folkman, C.M. 141, 142
Fonteh, A.N. 131, 145
Fou, S. 160
Fou, S.F. 160
Forbes, S.C. 129, 135
Ford, A. 135
Foroutan, P. 55, 130, 144, 157
Fortelius, M. 130, 140
Fortune, N.A. 136, 151
Fosso-Tande, J. 41, 131
Franchi, I.A. 147, 151
Franco, Jr., A. 130
Franke, I. 131
Freed, J. 120, 144
Freedman, M. 140
Freibert, F. 138
Friedman, J.R. 219
Frisbie, C.D. 16, 153
Froelich, P.N. 139, 152, 156, 214
Frontzek, M. 219
Frye, F.A. 136
Fujikawa, S. 55, 130, 144
Fujita, K. 29, 135
Funk, S. 136
Fu, R. 70, 131, 137, 142, 143, 144, 148, 151, 153, 217
Fu, R.Q. 51, 130, 140, 144
Furis, M. 20, 156, 218
Futrell, J. 120

G
Gaffney, B.J. 144, 162
Galliano, L. 136
Gallon, C. 130
Galluzzi, V. 129
Gambardella, U. 129
Gamble, K. 82
Gamcsik, M.P. 130, 210
Gamelin, D.R. 223
Gangadharaiah, S. 133
Gan, Z. 10, 45, 49, 69, 119, 129, 132, 140, 217
Gan, Z.H. 134, 137
Gao, F.P. 132
Garcell, E. 131
Garcia-Ricard, O.J. 131
Garcia-Santamaria, F. 129, 131
Gardner, H.J. 131
Gardner, J. 140
Gardner, J.E. 136
Gardner, J.S. 131, 141
Garnier, S. 144
Garrison, J.L. 135
Gaspe, C.K. 131
Gaudio, S. 129
Gaulin, B.D. 17, 63
Gavrilin, A.V. 144, 148, 149
Gebre, T. 131
Geerts, W. 156
Germain, S.A. 135
Gervais, C. 134
Gervais, G. 222
Gesquiere, A.J. 72
Ghanazadeh, S. 131
Ghan, S. 132
Ghosh, A. 98
Ghosh, S. 131, 144
Giamarchi, T. 129
Gilbert, D.M. 134
Gilbert, S.G. 133
Gill, R.L. 51
Gin, M. 52
Ginoux, P. 132
Gleeson, J.T. 136, 144, 159, 221
Goddard, P.A. 131, 135
Goddard, R.E. 108, 131
Goh, F. 131
Goldhaber-Gordon, D. 134, 153, 221
Golubov, A.A. 130
Gomez, A. 130
Goncalves, A.P. 138
Gonzalez, M. 131
Goodenough, J.B. 129, 141, 153
Goodrich, R. 120
Gopinath, T. 135
Gordon, E.D. 142
Gor'kov, L.P. 10, 24, 119, 144, 155, 221
Gor'kov, P.L. 49, 54, 114, 135, 148, 217
Goswami, D. 131, 157
Goto, T. 136, 147, 151
Goundie, B. 141
Gourlay, S. 120
Gower, L.B. 213
Gower-Winter, S. 54, 137, 150
Gozzo, F. 136
Graber, L. 131
Graf, D. 139
Graf, D.E. 131
Graf, M.J. 128
Graham, A. 88
Grant, C.V. 130, 143
Grant, S.C. 55, 107, 130, 135, 148, 150, 157, 211, 217
Graser, S. 128, 134, 135, 140
Green, E.L. 131, 139, 144, 145
Greenwood, R. 147
Greven, M. 224
Grey, C.P. 45, 129, 158
Griesfeller, J. 132
Griesinger, C. 134
Griffin, R. 120
Griffin, V.S. 134
Grini, A. 132
Grissonnanche, G. 131, 134
Groll, N. 128
Guan, Y. 147
Gu, B. 129, 134
Guenster, C. 158
Guerrero-Medina, K.J. 137, 149
Guevara, A. 129, 138
Guiet, A. 130
Guillamon, I. 33
K

Kaddour, S.C. 133
Kageyama, H. 139
Kaiser, N.K. 133, 137, 139, 142, 147, 148, 149, 150, 152
Kaliaguine, S. 153
Kalidindi, S. 88
Kalu, P.N. 129, 157
Kamburov, D. 28, 134
Kametani, F. 37, 132, 133, 135, 137, 138, 140
Kamihara, Y.K. 219
Kampf, A. 128
Kandel, H. 36, 143, 147
Kaneda, K. 151
Kaner, P. 138, 150
Kang, H.-J. 145
Kang, J. 135
Kang, W. 23, 220
Kantorovich, S. 141
Kanungo, R. 148, 153, 160
Kaplans, F. 132, 133, 137
Karpinski, J. 63, 134, 140
Kartsovnik, M.V. 147, 224
Kasahara, S. 33, 133, 140
Katase, T. 135
Katihar, A. 130, 131, 144, 145, 160
Katrych, S. 134, 140
Kaur, N. 151
Kell, A. 135
Keita, B. 128
Keller, H. 130
Kelleher, N.L. 135, 209
Keller, H. 140
Kemper, J.B. 137, 213
Kemper, K. 120
Kemper, L. 133
Kenneth L. 162
Kenny Braverman 82
Kenzelmann, M. 140
Kermers, G.J. 133
Kesgin, I. 129, 138
Kharitonov, M. 151
Khasanov, A. 133
Khawaja, K. 153
Khim, S. 133
Khodaparast, G. 221
Khodas, M. 140
Kidder, J. 72
Kihara, T. 160
Kilgore, B. 152
Killian, J.A. 138
Kim, C. 136
Kim, E.G. 133
Kim, J. 130, 159
Kim, J.E. 138
Kim, J.H. 27
Kim, J.S. 140, 162
Kim, J.S. 133, 136, 221
Kim, J.W. 133
Kim, K.H. 133, 219, 224
Kim, M. 53, 133, 150
Kim, M.-S. 147
Kim, P. 12, 215
Kim, S. 13, 72, 128, 133, 134, 158
Kim, S.S. 66, 132, 133, 157
Kim, Y.H. 145, 147, 151, 157
Kim, Y.K. 136
Kimura, H. 136
Kimura, T. 160, 218
Kindo, K. 136
King, M.A. 73, 131
Kinion, D. 128
Kinne, S. 132
Kiranc, M. 137
Kiryukin, V. 136
Kishima, Y. 138
Kismararhadjd, A. 133, 134
Kisner, R.A. 34
Kiswandi, A. 14, 129, 133, 138, 147
Kitagawa, K. 134
Kitchen, J.A. 135, 144
Klanjsek, M. 76, 129, 131
Klaus, H.-H. 158
Klein, E. 135
Klein, J. 135
Klimas, R. 142
Klimov, V.I. 129, 131, 139, 223
Knappenberger, J.R. 162
Knappenberger, K.L. 108, 129, 212
Knez, I. 133
Knowles, E.S. 130, 136
Knowles, J.C. 134
Kobayashi, T. 138
Kock, D. 132
Koenig, C. 136
Kohama, Y. 133, 135, 213, 223
Koh, Y.Y. 136
Kojima, M. 138
Kokozay, V.N. 129, 212
Kotovshyn, D.S. 132
Kollath, C. 129
Kolomiyets, O. 136
Kondo, A. 219
Kono, J. 27, 159, 160, 216, 221, 222
Koo, C. 134, 157
Kopp, T. 138
Kornevay, J.N. 129
Korochantsev, A.V. 151
Koros, W.J. 148
Korshunov, M.M. 130, 132, 133, 135
Kostyukevich, Y. 152
Kothapalli, K. 136
Kotliar, G. 138
Ovidiu Garlea, V. 133
Ozambela Jr., M. 54, 137
Ozarowski, A. 75, 76, 128, 129, 132, 133, 138, 139, 140, 141, 147, 149, 152, 153
Ozaroslan, E. 217
Ozerov, M. 159

P

Paduan-Filho, A. 21, 66, 133, 140, 220
Page, B.D.G. 72
Pagliuso, P.G. 139
Painter, T. 111, 128, 142
Painter, T.A. 128, 143, 216
Pajerowski, D.M. 130, 136, 219
Palmozona, A. 140
Pallech, I. 139
Paller, A.S. 145
Palm, E. 64, 120
Palm, E.C. 137
Pan, S. 163
Pan, W. 65, 134, 136, 223
Pan, X.Q. 134, 141
Pan, Y. 146
Pan, Z. 20
Panagopoulos, C. 137
Pandey, A. 139
Pando, K. 149
Pang, L. 130
Pankov, S. 137, 149, 152
Papatriantafyllopoulou, C. 140, 153
Paravastu, A. 108, 138, 142, 150
Paravastu, A.K. 156, 163, 210, 214
Park, H. 136
Park, J. 136
Park, J.-G. 136
Park, J.G. 138, 150
Park, J.-H. 134, 137, 145, 151
Park, J.S. 136
Park, Y.W. 136, 220
Parrell, J.A. 133, 134
Passey, B. 153
Pastor, R.W. 142, 143
Pati, M. 40, 136, 157
Paul, V.J. 39, 135, 137
Pavloostathis, S.G. 159
Payne, J. 82
Pearlton, S.J. 167
Peprah, M. 141
Perlstein, W.M. 137, 150
Peru, K.M. 145
Plesier, A.H. 152
Peterson, E. 136, 143, 150
Peterson, P.K. 135
Petit, S. 76, 141
Petrovic, C. 139, 221
Pfaff, D.A. 142
Pfeffer, L.N. 28, 65, 131, 134, 136, 145, 148, 155
Pham, J. 129
Phan, S. 135
Phillipps, P. 120
Phillipps, W. 120
Pickard, K.W. 36, 134, 147, 148, 149
Picraux, S.T. 223
Pielak, G.J. 51, 130, 144
Pietryga, J.M. 139
Piligkos, S. 132
Pirman, N.L. 136
Piro, N.A. 22
Piskho, G. 157
Piskho, G.L. 136
Piston, D.W. 133
Plocinski, P. 137
Plonczak, A. 135
Podgornykh, S.M. 140, 153, 155
Podgorski, D.C. 139, 144, 147, 148, 150, 154, 157
Points, M.S. 13, 134
Polenova, T. 49, 120, 210
Polfer, N.C. 135
Polanskii, A. 134, 140, 143
Polanskii, A.A. 137, 138, 139, 153
Pong, I. 98
Ponomaryov, A.N. 136
Popovic, D. 9, 10 119, 121, 137, 149, 222, 224
Poroseva, S.V. 128
Potocnik, A. 76, 132, 141
Pourdeyhimi, R. 130
Pourpoint, F. 45
Pramudya, Y. 137, 149, 152
Prashant, J. 128, 142
Pratt, F.L. 135
Pregelj, M. 76, 141
Prescimone, A. 132
Prestegard, J. 120
Price, D.D. 137
Pribe, W. 144, 153
Priestap, H.A. 213
Priman, N.L. 157
Primera-Pedrozo, J.N. 137, 149, 154
Prospero, J. 132
Proust, C. 134, 147
Pucci, J.A. 141
Pugliese, L. 88
Purcell, K.M. 131
Pusep, Y.A. 222
Putti, M. 140
Putzke, C. 33, 147
Puzniak, R. 140
P. Viatour 88
Wood, P. 120
Wood, R. 130, 144
Woolum, D.S. 147
Wosnitza, J. 159
Wright, J. 141, 159
Wright, J.A. 131, 144, 145
Wszolek, Z.K. 55, 130, 144, 212
Wu, G. 69, 140
Wu, T. 147
Wu, W. 132, 138
Wu, Z. 129

X
Xia, J.S. 21, 65, 66, 132, 133, 134, 140
Xian, F. 137, 139, 148, 152, 153
Xiang, Z.M. 138
Xiao, F. 159
Xie, G. 130, 140, 153, 154
Xie, Y. 138
Xin, Y. 88, 107, 108, 129, 153, 218
Xiong, P. 131
Xi, X. 224
Xu, A. 91, 129, 138, 148, 153
Xu, C. 129
Xu, T. 128
Xu, Y. 153, 154
Xu, Y.F. 135
Xu, Z. 154

Y
Yakunin, M.V. 140, 151, 153, 155, 223
Yamaguchi, H. 145, 151
Yamaguchi, T. 138
Yamamoto, A. 94, 130, 140
Yamamoto, S.J. 140
Yamanaka, R. 133
Yamaura, J. 14
Yáñez-Vilar, S. 140
Yang, E.-C. 219
Yang, K. 8, 128, 132, 138, 140, 154, 156, 164, 222
Yang, L. 135
Yang, X.-L. 52, 130, 132, 154, 209
Yang, Y. 133, 213
Yang, Y.-F. 128
Yao, A. 129, 138
Yao, Z. 133
Yarranton, H.W. 154
Ye, C.H. 135
Yeh, N.-C. 120
Yen, A. 42, 133
Yen, A.T. 135, 147
Ye, P. D. 216
Ye, Y. 139

Z
Zadrozny, J.M. 22
Zaliznyak, I. 140
Zamdborg, L. 135
Zanda, B. 154
Zandarashvili, L. 140
Zapf, V.S. 21, 64, 66, 130, 133, 135, 136, 140, 154
Zeinomar, A. 137
Zeng, B.R. 140
Zeng, H. 154
Zhai, L. 137
Zhang, C. 136, 140, 153, 154, 158, 221
Zhang, F. 142, 154
Zhang, H.-M. 52, 130, 132, 154
Zhang, H.M. 141
Zhang, J. 140
Zhang, L. 140, 154, 214
Zhang, Q. 141, 154
Zhang, S. 16, 134, 153
Zhang, X.L. 72
Zhang, Y. 134, 138, 140, 141
Zhao, Y. 139
Zheng, G.Q. 155, 224
Zheng, P. 131
Zheng, W. 141, 153
Zhigadlo, N.D. 141
Zhong, D. 223
Zhong, G. 134, 151
Zhou, H.-X. 138, 143, 150
Zhou, J. 134, 151
Zhou, J.D. 140
Zhou, J.S. 129, 131, 141
Zhou, J. 101, 131, 141, 144
Zhou, L. 45
Zhou, X.L. 214
Zhu, J.-X. 128
Zhu, L. 165
APPENDIX C: PUBLICATIONS & ACTIVITIES INDEX

Zhu, P. 213
Zhu, P.Z. 212
Zia, J. 142
Ziglio, C. 144
Ziolkiewicz, M. 137
Zlatar, Z. 135, 136
Zorko, A. 76, 132, 141, 219
Zudov, M.A. 131, 145, 155, 158, 223
Zvanut, M.E. 223
Zvonarev, M. 129
Zvyagin, S.A. 135, 159, 219