Expeditious Dissolution Dynamic Nuclear Polarization without Glassing Agents

Lama, B.; Collins, J.H.P.; Downes, D.; Smith, A.N. and Long, J. (UF, Biochemistry and Molecular Biology)

Introduction
Dissolution dynamic nuclear polarization (DNP) technique involves hyperpolarization of low-abundance nuclei, such as 13C or 15N, by transferring electron polarization from persistent radicals using microwave radiation at very low temperature, followed by rapid dissolution of the hyperpolarized substance with hot solvent and injection of the solution into a sample or organism for data acquisition via NMR or MRSI.1 The extent of polarization of the nuclei is dependent on several factors, including the mechanism of polarization transfer, magnetic field strength, microwave power and frequency, temperature and sample composition.2,3 We explored an alternative method of sample preparation which removes the need for a toxic glassing agent using isopentane as a cooling bath. This work has been published in *NMR in Biomedicine*, 2016, 11, 6892-6905.

Experimental
Samples were prepared using (1-13C)-enriched metabolites (sodium acetate, pyruvate or butyrate) (3.0 M) co-dissolved with 4-oxo-TEMPO or trityl OX063 in solvent ($\text{D}_2\text{O}/\text{H}_2\text{O}$ alone or with perdeuterated glassing agent). Samples were frozen in liquid nitrogen or 2-methylbutane cooled to 130 K, polarized and monitored using small flip angle for every five minutes up to 3 hours at low temperature (\sim1.2 K) at 5 T.

Results and Discussion
The solid state polarization of an aqueous solution (D_2O) of sodium acetate frozen with isopentane is 28 ± 2%, and the polarization of sodium acetate ($\text{D}_2\text{O}/\text{EtOH-D}_6$) frozen in liquid N$_2$ is 26 ± 2%. The polarization buildup time constant is three times faster for the D_2O/isopentane sample (480±70 s) relative to the glassed sample prepared with liquid N$_2$ (1150 ± 200 s). The use of D_2O removing glassing agent in D_2O/isopentane samples means more concentrated and coupled spin bath with shorter inter-spin distances, enabling stronger dipolar interactions for spin diffusion in the matrix and faster polarization of the sample.

Conclusions
Rapid freezing of sample without glassing agents using isopentane enabled a 1.5–3-fold time savings in polarization buildup time and equal achievable polarization in comparison to the sample with glassing agents frozen in liquid nitrogen for dissolution DNP.

Acknowledgements
We are grateful to NHMFL’s AMRIS Facility, NSF Cooperative Agreement No. DMR-1157490, the State of Florida, and the University of Florida, Division of Sponsored Research for the support for this research.

References
Fig. 1 Schematic diagram of sample set-up for rapid freezing of an aqueous solution to form a vitrified solid.

Fig. 2 Polarization buildup curves at 5 T and ≤1.2 K for 3.0 M sodium acetate and 50 mM 4-oxo-TEMPO dissolved and frozen as indicated.