Landau Level Spectroscopy of Massive Dirac Fermions in ZrTe₅

Jiang, Y.; Jiang, Z. (Georgia Tech, Physics); Dun, Z.; Zhou, H.D. (UTK, Physics); Chen, K.-W.; Moon, S. (NHMFL and FSU, Physics); Besara, T.; Siegrist, T.M.; Baumbach, R.E. and Smirnov, D. (NHMFL)

Introduction
A quantum spin Hall insulator (QSHI) hosts topologically protected states that enable dissipationless transport. Unfortunately, all the QSHIs discovered to date possess a small band gap, hindering its use in room-temperature applications. ZrTe₅, as a possible large-gap QSHI in its monolayer form, has recently attracted much attention. However, its electronic structure in the bulk is still under heated debate, with interpretations ranging from weak/strong topological insulator to Dirac semimetal. Using bulk-sensitive magneto-infrared (magneto-IR) spectroscopy technique, we investigated the mystifying band structure of ZrTe₅.

Experimental
Owing to its layered structure and the weak van der Waals force between layers, IR-transparent thin flakes of ZrTe₅ can be achieved by repeatedly exfoliating the material using an IR-transparent Scotch tape. In our experiment, we performed both broadband (unpolarized) spectroscopy measurements using Fourier transform IR spectrometer and circularly polarized measurements using a wavelength tunable Quantum Cascade Laser (QCL). The measurements were performed in SCM3 at 4.2K and in Faraday configuration with magnetic field up to \(B = 17.5 \) T.

Results and Discussion
Figure 1 shows the normalized transmission spectra of ZrTe₅ thin flakes taken at selected magnetic fields. Here, Landau level (LL) transitions are expected to manifest themselves as absorption dips and blue-shift with increasing magnetic field. Owing to the low carrier density of our samples (approaching the intrinsic limit), a series of inter-band LL transitions were observed. These transitions follow a peculiar \(\sqrt{B} \) and \(\sqrt{n} \) dependence, where \(n \) is the LL index, which can be described by a massive Dirac fermion model. Most saliently, a four-fold splitting of low-lying LL transitions was observed in high magnetic fields (marked by down triangles), which can be attributed to the combined effect of finite mass, large g-factor, and electron-hole asymmetry. The electron-hole asymmetry breaks the energy degeneracy of \(L_{-n} \rightarrow L_{n+1} \) and \(L_{-n-1} \rightarrow L_n \) transitions and therefore can be resolved in QCL-based circularly polarized measurements [1].

Conclusions
We enabled magneto-IR transmission measurements of layered topological material ZrTe₅. We found that ZrTe₅ thin flakes are Dirac semimetals with a small gap/mass that could not be resolved in previous angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy measurements. In high magnetic fields, we observed a four-fold splitting of low-lying LL transitions, which signifies the importance of electron-hole asymmetry and Zeeman effect in this material.

Acknowledgements
This work was primarily supported by the DOE (Grant No. DE-FG02-07ER46451). The crystal growth was conducted at both UTK (supported by the NSF, Grant No. DMR-1350002) and the NHMFL. Z.J. acknowledges support from the NHMFL Visiting Scientist Program. The magneto-IR measurements were performed at the NHMFL, which is supported by the NSF Cooperative Agreement No. DMR-1157490 and the State of Florida.

References