Quantum Criticality and its Anisotropy in the Quadrupole Ordered System PrV$_2$Al$_{20}$

Shimura, Y.; Nakatsuji, S.; Tsujimoto, M. (Institute for Solid State Physics, University of Tokyo); Zeng, B.; Zhang, Q. and Balicas, L. (NHMFL, FSU)

Introduction

The cubic quadrupolar Kondo lattice PrV$_2$Al$_{20}$ with the Γ_3 non-magnetic doublet ground state having orbital (quadrupole) degrees of freedom exhibits an antiferro-quadrupole ordering at 0.6 K. In the quadrupole ordered state, a superconducting transition has recently been found with a heavy quasi-particle mass at 0.05 K. Under an applied magnetic field, $H_c \sim 11$ T for $H // [111]$, we found a field-tuned quantum critical behavior [1]. Above the critical field, we also observed quantum oscillations which is associated with heavy electron mass [2]. This result indicates that the origin of the field-induced quantum criticality is due to the competition between an ordered state of the localized quadrupole moment below H_c and the Kondo-like screened state for quadrupole moments coupling with the conduction electrons above H_c.

Experimental

Single crystal of PrV$_2$Al$_{20}$ were synthesized by Al self-flux method, using a home-made vertical tube furnace and temperatures up to ~ 1400 °C. We have measured the magnetoresistance $\rho(H, T)$ for magnetic fields, mainly, parallel to the [110] direction and down to 23 mK at the SCM1 facility.

Results and Discussion

Figure 1 shows the field dependence of the magnetoresistance $\rho(H)$ in PrV$_2$Al$_{20}$ for $H // [110]$ and [111]. $\rho(H)$ for $H // [110]$ exhibits distinct hysteresis for fields between 13 T and 16 T, suggesting a first-order transition in addition to the shoulder like anomaly at ~ 8 T. These behaviors differ from that of $\rho(H)$ with $H // [111]$. Figure 2 shows the magnetic phase diagram for $H // [110]$ constructed from $\rho(H, T)$. This phase diagram indicates that the other high-field ordered state remains in regions bounded by fields between 8 T and 13 T [3]. This is evidence that the quadrupolar order parameter changes when exceeding magnetic field of 8 T. A similar high-field phase for $H // [110]$ is also discussed in the cubic PrPb$_3$, indicating antiferro-quadrupole ordering. The emergence of the high-field phase is universal phenomena for the cubic Pr-based compounds with a Γ_3 doublet ground state.

Conclusions

We measured the magnetoresistance of PrV$_2$Al$_{20}$ for $H // [110]$. A first-order transition and kink were observed at 13 T- 16 T and 8 T, respectively. These give us key information in clarifying the quadrupolar order parameter.

Acknowledgements

This work is partially supported by Grants-in-Aid for Scientific Research (No. 25707030, 15J08663 and 25887015), by Grants-in-Aids for Scientific Research on Innovative Areas (15H05882, 15H05883), Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (No.R2604) from the Japanese Society for the Promotion of Science and the Institute of Complex Adaptive Matter (ICAM). A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida.

References