Influence of Pb(II) Ions on the EPR Properties of the Semiquinone Radicals of Humic Acids and Model Compounds: High Field EPR and Relativistic DFT Studies

M. Witwicki, J. Jezierska, M. Jerzykiewicz, A. R. Jaszewski (Wroclaw University, Chemistry); A. Ozarowski (NHMFL)

Introduction
The interaction of humic acids (HAs) with metal ions is particularly important as HAs together with clays and metal oxides are a key factor determining the metal binding in soils [1]. Significant changes in the free radicals concentration resulting from the interaction of HAs with metal ions were observed, e. g. with Mg$^{2+}$, Cu$^{2+}$, Ca$^{2+}$, Zn$^{2+}$, or Cd$^{2+}$. However, a completely different effect is observed for Pb$^{2+}$ ions. The complexation of Pb$^{2+}$ with HA macromolecules leads to formation of a new kind of stable radical species characterized by unusually low g values ($g \approx 2.001$) [2,3].

Experimental
High-field and frequency EPR spectra (416.00 GHz) were recorded on the transmission instrument at the NHMFL EMR facility. All computations were performed by using the ADF suite of programs [4] as described in ref. 5.

Results and Discussion
The formation of Pb(II) complexes with the model radicals derived from 3,4-dihydroxybenzoic acid (34dhb) was accompanied by a significant decrease of g as compared to the parent radicals. The Density Functional Theory calculations, including prediction of the g tensors, were carried out for complexes with different forms of model radical ligands (L$^{2-}$, HL$^{-}$, and H$_2$L$^-$) representing various ligation schemes and protonation states. It was shown that the structures with a significant accumulation of spin population on the Pb atom cannot explain the experimentally observed g tensor component shifts.

Conclusions
The determination of the g tensor components for model systems was possible only from high-frequency and high-field EPR measurements (Fig. 1) at low temperatures. Formation of two complexes was revealed by two different high-field EPR spectra characterized by dissimilar g-tensor patterns. For one of them, the splitting due to an anisotropic hyperfine interaction with the 207Pb nucleus (71.6 G) was observed. The comparison of the computed and experimental g tensor components indicates that only the decrease of spin population on all oxygen atoms accompanied by a corresponding spin population increase on the carbon atoms of the benzoic ring can reproduce the experimental results (Fig. 2), thus supporting strongly the prediction of the Pb(II) complex geometry in [5].

Acknowledgements
All computations were performed on computers of the Wroclaw Center for Networking and Supercomputing (Grant No. 48). High field EPR spectra were recorded at the NHMFL, which is funded by the NSF through the Cooperative Agreement No. DMR-0654118, by the State of Florida, and by the DOE. This work was financially supported by MNiSW (Grant No. 2PO4G 06 30).

References