Studies on the Mechanism of Reduction of Vanadium (V) Dipicolinate Compounds by L-Ascorbic Acid: The Ascidia nigra story

D.C. Horton, A.A. Holder (Southern Mississippi U., Chemistry and Biochemistry); J. Krzystek (NHMFL)

Introduction
It has long been recognized that various species of tunicates (ascidians) actively accumulate heavy metals, including manganese, magnesium, iron, molybdenum, niobium, tantalum, chromium, titanium, and most commonly, vanadium [1]. The concentration of vanadium species in sea water is 35 nM, whereas the concentration in the blood cells of several species of ascidians can approach 350 mM [2]. Ascidia gemmata, reported with 350 mM vanadium in blood cells contains 10^7 times the vanadium in seawater [3]. The coordination chemistry of vanadium in the tunicate is yet to be completely clarified. We now report the very first High-Frequency and -Field (HFEPR) studies on selected V(V) complexes in the presence of L-ascorbic acid (H$_2$A), and V(III) complexes in the solid state, where these studies will be used to model the oxidation state of vanadium in the tunicates.

Experimental
NH$_4$[VO$_2$(dipic)] (H$_2$dicpic = dipicolinic acid), Na[VO$_2$(dipicNH$_2$)]H$_2$O, NH$_4$[VO$_2$(dipic-OH)]H$_2$O, NH$_4$[VO$_2$(dicpic-Br)], NH$_4$[VO$_2$(dicpic-Cl)].H$_2$O, [V(dipic)(Hdicpic)(OH)$_2$], [V(dipic)(H$_2$O)$_2$F]. 1.5 H$_2$O, and H$_2$A were used in this study. Experiments were carried out on reaction mixtures containing V(V) complexes and H$_2$A in water, and V(III) complexes in the solid state. In most cases, [V(V)] = 100 mM and [H$_2$A] = 500 mM. The experiments were performed using the EMR Facility and in particular its 15/17 T superconducting magnet.

Results and Discussion
It was found that H$_2$A reduced all of the V(V) complexes to V(III) species in aqueous solution when H$_2$A was kept as five equivalents to that of the V(V) complexes. This was proven on acquisition of HFEPR spectra. A comparative study was carried out on the V(III) species, [V(dipic)(Hdicpic)(OH)$_2$] and [V(dipic)(H$_2$O)$_2$F]. All the investigated samples produced well-defined EPR spectra at sufficiently high frequencies and fields. The spectra can be interpreted as originating from a ground $S = 1$ state, as expected for V(III). In particular, the solid complex [V(dipic)(Hdicpic)(OH)$_2$] yielded spectra of an unprecedented quality for V(III) (Figure 1), which could be almost perfectly simulated using a powder pattern for the triplet state, with a positive value for the zero-field parameters.

Conclusions
We have successfully acquired the first HFEPR spectra for V(III) complexes with dipicolinic acid and its analogs as ligands. It was found that H$_2$A, a two electron reductant, reduces V(V) species to form V(III) species.

Acknowledgements
A Southern Mississippi University start up fund is greatly acknowledged by AAH.

References