High Resolution 1H MRI of Postmortem Human Brain Sections Performed at 21.1 T

K.J. Schweitzer (Mayo Clinic FL, Neurology); P. Foroutan (NHMFL, FSU, Chem. and Biomed. Eng.); D.W. Dickson (Mayo Clinic FL, Neuroscience); D.F. Broderick (Mayo Clinic FL, Radiology); U. Klose (U. Hospital Tuebingen, DE, Radiology); D. Berg (U. Tuebingen, DE, Hertie Inst.); Z.K. Wszolek (Mayo Clinic FL, Neurology); S.C. Grant (NHMFL, FSU, Chem. and Biomed. Eng.)

Introduction

In this study, the first quantitative MRM evaluations of human pathological tissue at 21.1 T, the highest magnetic field available for MRI, are presented. This field strength provides improved sensitivity and enhanced contrast, particularly for those mechanisms that exploit differences in magnetic susceptibility between tissues and pathologies. Specimens harvested from human patients displaying differing degrees of Alzheimer and Parkinson related pathology were analyzed.

Experimental

Prior to imaging, fixed postmortem human samples of *substantia nigra* (SN), *globus pallidus* (GP) and hippocampus (HC) were washed in phosphate buffered saline (PBS) and immersed in Fluorinert (FC-43, 3M Corp). All MR data were acquired using a 21.1-T vertical magnet equipped with a Bruker Avance III console and Mini0.75 gradient system. Utilizing a 33-mm birdcage coil, high resolution 1H scans were acquired at 14°C. Three-dimensional Fast Low Angle Shot (FLASH) scans were acquired over 4 hours at the isotropic resolution of 50 μm. T_2/T_2^* relaxation were quantified using multi-slice spin-echo sequences (MSSE) and multiple gradient echo (MGE) sequences at a resolution of 100x100x550 μm.

Results and Discussion

3D micrographs of neurodegeneration display heterogeneity in MRM contrast that appears related to iron distribution, particularly for specimens expressing higher degrees of Parkinsonism. Meanwhile, Alzheimer’s specimens displayed pronounced alterations in tissue microstructure. Pathological sections of SN and GP demonstrate a significantly stronger T_2/T_2^* contrast in the structures and surrounding fiber tracts, possibly due to accumulation of iron. Pyramidal tracts of the brainstem demonstrate T_2/T_2^* increases for all pathologies compared to controls. The putamen shows decreased T_2 while the external GP displays decreased T_2^* for all pathologies. Statistical significance also was found between hippocampal control sections and all other pathologies for T_2 in gray matter and CA1, while T_2^* values display significance in CA2 and 3. Parametric maps (Fig 1B&C) display additional differences between pathologies not evident from an ROI analysis.

Conclusions

Because of its specificity and spatial resolution, histological and immunological staining continue to be the standard for pathological evaluation. However, MRM offers additional complementary information that is disease specific and possibly elucidates severity. Quantitative analysis of relaxation proved very sensitive in identifying control versus pathological tissue, while parametric mapping demonstrated the potential for categorizing severity. As a pathological tool, MRM has potential to elucidate the extent and severity of such neurodegeneration.

Acknowledgements

This research was supported by The NHMFL (User Collaboration Grant Program award to SCG; NSF DMR-0084173), The Florida State University, State of Florida and the Mayo Clinic. All MRI data were acquired at the NHMFL, Tallahassee, FL.

References