Large Positive Magnetoresistance of the Lightly Doped La$_2$CuO$_4$ Mott Insulator

I. Raičević, D. Popović (FSU, Physics and NHMFL), C. Panagopoulos (Department of Physics, University of Crete and FORTH, & Division of Physics and Applied Physics, Nanyang Technological University); T. Sasagawa (Materials and Structures Laboratory, Tokyo Institute of Technology)

Introduction
In doped Mott insulators, the presence of several competing ground states combined with a Coulomb repulsion between electrons leads to various nanoscale inhomogeneities and the expected emergence of glassy dynamics. In cuprates, for example, spin glass behavior is well established at temperatures $T < T_{SG}(x)$ (x – doping). Moreover, in $\text{La}_{1.97}\text{Sr}_{0.03}\text{CuO}_4$ at $T \ll T_{SG}$, charge heterogeneities are also dynamic, consistent with an underlying cluster glass ground state that results from Coulomb interactions [1]. In the same T regime, the out-of-plane magnetoresistance (MR) in the magnetic field $B || c$ axis was found to be positive [1], in contrast to most reports on $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ (LSCO) and other cuprates, and exhibited signatures of glassiness, such as hysteresis and memory [1]. Here we present a detailed study of both in-plane and out-of-plane MR over a wide range of T and B in single crystals of both LSCO and $\text{La}_{2-x}\text{Cu}_{1.4}\text{Li}_{0.6}\text{O}_4$ (Li-LCO) with $x=0.03$. For this value of x, only short-range antiferromagnetic (AF) order is present in LSCO, while in Li-LCO the long-range AF order of the parent compound is still present in the experimental T-range.

Experimental
MR was measured in a dilution refrigerator ($0.050 < T (K) < 0.7$) up to 9 T and in SCM2 with a He3 system ($0.300 < T (K) < 70$ K) up to 18 T. B was applied both parallel ($B || ab$) and perpendicular to the CuO$_2$ planes ($B || c$).

Results and Discussion
Both materials exhibit the emergence of a strong, positive MR at $T \ll T_{SG}$ in both in-plane and out-of-plane transport for both B orientations [see, e.g., Fig. 1(a)]. This positive MR, associated with charge glassiness, grows as $T \to 0$ and exhibits hysteresis and memory [2]. Moreover, the positive MR $R(T,B)$ is described by a universal scaling function (Fig. 1(b), [2]), similar to a broad class of nonmagnetic disordered insulators with strong Coulomb interactions. At higher T, the MR is negative, consistent with other studies.

Conclusions
It is surprising and striking that, in spite of the presence of the AF order (long-range in Li-LCO and short-range in LSCO), the lightly doped La$_2$CuO$_4$ shows behavior that is characteristic of systems that are far from any magnetic ordering. This is consistent with the picture AF domains, frozen at low T, and holes confined to the domain walls. The charge glass observed in lightly doped La$_2$CuO$_4$ thus seems analogous to that in other disordered, interacting systems, except that here only holes in the domain walls contribute to transport and glassiness.

Acknowledgements
This work was supported by NSF DMR-040349, DMR-0905843, NHMFL via NSF DMR-0654118, EURYI, MEXT-CT-2006-039047, and the National Research Foundation, Singapore. We are grateful to X. Shi for technical assistance, E. S. Choi for susceptibility measurements, V. Dobrosavljević, L. Benfatto, and M.B. Silva Neto for discussions.

References