Angular Dependence of the YBa$_2$Cu$_3$O$_7$+BaZrO$_3$ Irreversibility Line

S. A. Baily, B. Maiorov, H. Zhou, S. R. Foltyn, L. Civale (MPA-STC, LANL); J. Durrell (Dept. of Materials Science & Metallurgy, University of Cambridge); F. F. Balakirev, M. Jaime (NHMFL, LANL)

Introduction
The high transition temperature and anisotropy of high temperature superconductors leads to melting of the vortex lattice into a vortex liquid phase. This transition marks the upper limits for the use of superconductors; therefore increasing it is highly desirable. This transition is affected by the nature and density of the defects present in the superconductor. In the presence of a magnetic field (\mathbf{H}), for 3-D anisotropic superconductors containing random point-like defects the angular dependence of the vortex liquid-solid transition is governed by the electronic-mass anisotropy (γ), and scales with $\alpha(\theta) H = H[\cos^2(\theta)+\gamma^2\sin^2(\theta)]^{1/2}$, where θ is the angle between \mathbf{H} and the crystallographic c axis. In contrast, pinning by correlated defects leads to a solid phase known as Bose-glass that can be distinguished from random point-like defects by the presence of a peak in the angular dependence of the melting line when \mathbf{H} is aligned with the defects [1]. The addition of BaZrO$_3$ (BZO) into YBa$_2$Cu$_3$O$_7$ (YBCO) films can be tailored such that both random nanoparticles and self-assembled nanorods (correlated defects) can be introduced, depending on growth conditions [2, 3].

Experimental
Electrical ac-transport was used to measure the vortex dissipation in the liquid phase as well as to determine the melting line (where dissipation goes to zero), as a function of angle for YBCO+BZO films in the 15 T staff-lab magnet using the new DC rotator probe acquired using UCGP funds (PI B. Maiorov). This work builds on previous results obtained in pulsed and DC fields. Two additional YBCO+BZO films were studied, a 0.2 micron film and a 0.7 micron film grown at a lower rate resulting in many columnar defects.

Results and Discussion
Angular dependent measurements were consistent with results from films studied previously in that there is no clear c-axis peak in the vortex melting line at moderate to high fields, but a broad enhancement over a large angular range.

Measurements of the c-axis melting field shown in Fig. 1 indicate that the 0.2 micron film with BZO has the highest melting line at moderate fields. This advantage becomes marginal at higher fields where optimized samples show a similar vortex melting. In contrast, for \mathbf{H} oriented away from the crystalline axis extended BZO particles significantly enhance the vortex melting line. These results indicate that although artificially introduced defects don’t significantly enhance H_m for $\mathbf{H}||c$ at high fields in comparison to what can be achieved with naturally occurring defects, they can result in important enhancements over a much broader angular range, something much desired for applications.

Acknowledgements
This work is supported by the NHMFL User Collaboration Grants Program, U. S. National Science Foundation, U. S. Department of Energy, and the State of Florida.

References