Evidence for a Fractional Quantum Hall State at $\nu=1/4$ in a Wide Quantum Well

D.R. Luhman (Princeton University), W. Pan (Sandia National Laboratories) D.C. Tsui (Princeton University), L.N. Pfeiffer (Bell Labs), K.W. Baldwin (Bell Labs), and K.W. West (Bell Labs)

Introduction

Interest in the even-denominator fractional quantum Hall (FQH) state at $\nu=5/2$ continues to remain high, partially due to its potential relevance in fault-tolerant, topological quantum computing schemes. Yet observations of even-denominator FQH states have been rare beyond the $\nu=5/2$ state in single-layer systems. In particular, there is no evidence of a FQH state at $\nu=1/2$. In bilayer systems the situation is different. The presence of two nearby, interacting electron layers introduces an additional degree of freedom which can give rise to the formation of a FQH state at $\nu=1/2$, which, indeed, has been observed in double quantum wells [1] and in wide single quantum wells (WSQWs) [2]. In general a similar state should also occur at $\nu=1/4$, however, to the best of our knowledge it has not been observed experimentally. An observation of a FQHE state at $\nu=1/4$ would not only be important in itself but also may shed more light on the origin of still enigmatic $\nu=1/2$ FQH state in WSQWs.

Experimental

To search for a FQH state at $\nu=1/4$ we have used a high-quality GaAs quantum well with a well width of 50 nm, an electron density of $n = 2.55 \times 10^{11}$ cm$^{-2}$, and a mobility of 10^7 cm2/Vs. We have measured the electronic transport properties of this sample at $T \sim 35$ mK in magnetic fields up to 45 T using the Hybrid facility at NHMFL.

Results and Discussions

As shown in Figure 1, when the sample is perpendicular to the magnetic field, the diagonal resistance displays a kink and the Hall resistance shows a subtle deviation from the classical slope at $\nu=1/4$. When the sample is tilted to an angle $\theta=20.3^\circ$, the kink develops into a strong R_{xx} minimum and a plateau emerges in clearly demonstrating a FQH state at $\nu=1/4$. As to the origin of the $\nu=1/4$ state, one possibility is a two-component Halperin state such as $\{553\}$ or $\{771\}$. On the other hand, the possibility that $\nu=1/4$ state is described by $\{771\}$ is unlikely considering the bilayer interpretation of the $\{nnm\}$ wavefunctions. For the $\{771\}$ wavefunction the electron filling factor in each layer would be $\nu=1/7$ and typical single-layer two-dimensional electron systems (2DESs) enter into an insulating phase beyond $\nu=1/5$ at low temperatures. An alternate possible description for the observed $\nu=1/4$ state may be the pairing of composite fermions, similar to the proposal for a $\nu=1/2$ FQH state in a thick 2DES [3].

Conclusions

Our data provide evidence for the existence of a FQH state at $\nu=1/4$ in our sample. The origin of this state has yet to be determined.

References