Doping-Driven Collapse of the SDW Correlation Gap in SmFeAsO$_{1-x}$F$_x$

Scott C. Riggs (FSU), H. Chen (Hefei, China), R. H. Liu (Hefei, China), X. H. Chen (Hefei, China), Physics), J. B. Kemper (FSU, Physics), Z. Stegen (FSU, Physics), G. S. Boebinger (FSU, Physics), R. D. McDonald (LANL), F. F. Balakirev (LANL), Albert Migliori (LANL)

Introduction

We report the Hall resistivity, ρ_{xy} of polycrystalline SmFeAsO$_{1-x}$F$_x$ for four different fluorine concentrations from the onset of superconductivity through the collapse of the structural phase transition. For the two more highly-doped samples, ρ_{xy} is linear in magnetic field up to 50 T with only weak temperature dependence, reminiscent of a simple Fermi liquid. For the lightly-doped samples with $x < 0.15$, we find a low temperature regime characterized ρ_{xy} (H) being both non-linear in magnetic field and strongly temperature dependent even though the Hall angle is small. The onset temperature for this non-linear regime is in the vicinity of the structural phase (SPT)/spin density wave (SDW) transitions. The temperature dependence of the Hall resistivity is consistent with a thermal activation of carriers across an energy gap. The evolution of the energy gap with doping is reported.

Experimental

The polycrystalline samples of SmFeAsO$_{1-x}$F$_x$ were synthesized using conventional solid state reaction [1] and cut into rectangular prisms with a typical size of 1.5 x 1 x 0.1 mm3. The resistivity ρ transverse to the applied magnetic fields was measured using the standard four-terminal digital ac lock-in technique in continuous fields up to 35T and in pulsed fields up to 60T at the National High Magnetic Field Laboratory.

Results and Discussion

In conclusion, we have defined a small-Hall-angle regime in SmFeAsO$_{1-x}$F$_x$ that is characterized by unusual behavior of ρ_{xy} (H): nonlinear in magnetic field and exponential in temperature. This regime exists at low fluorine doping, $x < 0.15$, and at temperatures below the structural and SDW phase transitions. At either higher temperatures or doping, the Hall resistivity behaves like a conventional metal. Finally, the demarcation at $x \approx 0.15$ between the nonlinear regime and conventional metal behavior is the same doping where there is both an end to the SPT/SDW ordering and an insulator-to-metal crossover in the normal state.

Figure 1: Temperature dependence of the Hall number (right) and inverse Hall number, normalized to carriers per Fe-atom (left). The dashed lines are exponential fits. The inset shows the doping evolution of the energy gap, normalized to the value of δ at $x=0.05$ for this study (black up triangles) and Liu et al [8] (red down triangles). For comparison, the doping dependence of the spin density wave transition (blue crosses), TSDW, is also provided, normalized to TSDW ($x = 0.05$) = 114 K [8].

Acknowledgements

Part of this work was supported by NSF Cooperative Agreement No. DMR-0654118, by the State of Florida, and by the DOE. Scott C. Riggs would like to acknowledge the ICAM travel fellowship for financial support.

References