In-Situ Calibration of the Relaxation Calorimeter for SCM1

Y. H. Kim, Y. Takano (UF, Physics); H. Tsujii (Kanazawa Univ., Physics)

Introduction

A relaxation calorimeter has been in use at the DC Field Facility of the NHMFL in Tallahassee since 2001 [1], in the dilution refrigerator for the 20-tesla superconducting magnet SCM 1. More than 100 thermal cycles between room temperature and 20 mK in the last eight years have finally taken their toll this year, damaging a thermal weak link between the sample platform and the thermal reservoir. This damage and subsequent repair of the calorimeter have made recalibration of the calorimeter necessary.

Principle

Calibration of a relaxation calorimeter normally consists of determination of the thermal conductance of the weak link as a function of temperature and magnetic field. In the present case, however, we have been forced to also calibrate the resistance thermometer simultaneously, since the thermometer has been affected by the calorimeter repair. This is done by measuring the thermal relaxation times of the calorimeter with two standard materials whose heat capacities are known and have different temperature dependences.

At a given temperature and magnetic field, let the heat capacities of two standard materials be C_1 and C_2, and the thermal relaxation times of the calorimeter with them τ_1 and τ_2. Then

$$\frac{C_1}{C_2} = \frac{\tau_1 - \tau_0}{\tau_2 - \tau_0}, \tag{1}$$

where τ_0 is the calorimeter relaxation time without a sample. If the two heat capacities C_1 and C_2 have different temperature dependences, then the ratio C_1/C_2 will be a function of temperature, allowing the temperature to be determined via Eq. 1. Subsequently, the conductance κ of the weak link will be given by $\kappa = C(\tau - \tau_0)$, where C and τ are those of either material 1 or 2.

We use platinum and silver as the standard materials for two reasons: (1) platinum has a relatively small phonon specific heat in comparison with silver, making the ratio of the total specific heats of the two metals C_{Pt}/C_{Ag} to vary with temperature T for $T > 1$ K; (2) the nuclear specific heat of platinum contributes to τ_{Pt} because of the short spin-lattice relaxation time T_1 of 195Pt, whereas no such contribution exists in silver because of the very long T_1 of 107Ag and 109Ag, causing detected C_{Pt}/C_{Ag} to be strongly temperature dependent at $T < 1$ K. The figure shows the ratio C_{Pt}/C_{Ag} (for equal molar amounts) at various magnetic fields, excluding the undetectable nuclear specific heat of silver. Here C_{Pt} has been taken from Refs. [2], to which calculated nuclear specific heat has been added, and C_{Ag} comes from Ref. [3].

As the figure shows, the method does not work in zero field at temperatures below about 0.9 K, where the ratio C_{Pt}/C_{Ag} becomes nearly constant. We use aluminum instead of platinum in this temperature region, where the metal is a superconductor whose heat capacity differs vastly from that of silver, a normal metal.

Acknowledgements

We thank J. S. Kim for repairing the calorimeter. This work was supported in part by a Grant-in-Aid from the JSPS.

References