High-field de Haas-van Alphen Investigation of the Filled Skutterudite Compound NdOs$_4$Sb$_{12}$

P.-C. Ho (CSU, Fresno, Physics), J. Singleton (NHMFL/LANL), M. B. Maple (UCSD, Physics), P. Goddard (Oxford U., Physics), T. Yanagisawa (Hokkaido U., Japan)

Introduction

The filled skutterudite compound NdOs$_4$Sb$_{12}$ has a ferromagnetic order below ~1K, which conforms to mean-field magnetism [1]. From the specific heat measurement, a large electronic specific heat coefficient $\gamma \sim 520$ mJ/mol-K2 is determined, which is reminiscent of a heavy fermion behavior. An additional mode appears in the elastic constant C_{11} in ultrasonic measurements [2], which may originate from the tunneling motion of the off-centered sites for a Nd ion [3] and was not found in other rare earth filled skutterudite antimonides. This suggests that NdOs$_4$Sb$_{12}$ may have some abnormal electron-phonon interactions. In order to investigate the electronic structure and Fermi surface topology in this compound, we performed de Haas-van Alphen (dHvA) measurements in NdOs$_4$Sb$_{12}$.

Experimental

Single crystals of the filled skutterudite compound NdOs$_4$Sb$_{12}$ were grown via the molten metal flux technique at UCSD. The dHvA effect of NdOs$_4$Sb$_{12}$ was measured in the Pulsed and Static Field Facility in the National High Magnetic Field Laboratory at Los Alamos and Tallahassee by a susceptometer and a torsional magnetometer down to 0.4 K.

Results and Discussion

Experiment of magnetic susceptibility performed in pulsed fields of H// [100] show dHvA frequencies at 72 ± 3, 950 ± 10, and 2560 ± 20 T (Fig. 1) with cyclotron mass ranging from 0.3 to 2.9 m_e, where $m_e \equiv$ bare electron mass. The low frequency ~70 T Fermi surface was also detected in acoustic dHvA. Moreover, the preliminary angle dependence of dHvA frequencies is very similar to that of LaOs$_4$Sb$_{12}$ (Fig. 2). These results indicate that the large γ is not from heavy fermion behavior but more likely to originate from some type of low-lying excitations, which may be related to the additional ultrasonic mode.

Conclusions

Fermi surfaces detected in current dHvA experiments in NdOs$_4$Sb$_{12}$ are similar to those of LaOs$_4$Sb$_{12}$ and the effective mass is close to m_e. Large γ found in the previous specific heat measurement may originate from a low lying excitation.

Acknowledgements

This research at CSU-Fresno was supported by the start-up fund and Research Corporation (CCSA#7669); at UCSD by U.S. DOE (DE-FG02-04ER46105) and the NSF (DMR 0902478); at NHMFL/LANL by the NSF, the State of FL and the US DOE.

References