Wireless Control of an Implantable Coil System for Magnetic Resonance Imaging and Spectroscopy

B. L. Beck (UF, AMRIS Facility), B.S. Letzen (UF, Elect. Eng.), R. Bashirullah (UF, Elect. Eng.), and T.H. Mareci (UF, Biochemistry)

Introduction: About 7% of the U.S. population has diabetes, with 5-10% of these having Type-1 diabetes; a pancreatic disorder in which insulin production is hindered [1]. Although daily insulin injections give people a near normal life, they are still greatly affected by this lifestyle and this therapy can only delay the major health consequences of diabetes [2,3]. An alternative therapy is implantable tissue-engineered pancreatic-constructs for insulin production, which have been monitored with NMR [4-5]. However, these NMR measurements are sensitivity-limited and therefore hinder the evaluation of the construct functions and performances. In addition, the detection of multiple important biological nuclei, including ^{1}H, ^{19}F, ^{31}P, and ^{13}C is necessary for a complete characterization of the pancreatic substitute’s function, but multiple-resonant coils require additional components, or create degenerate modes, that add loss to the coil circuit and limit the sensitivity.

To overcome the sensitivity limitations, we developed a multiple-frequency solution involving a “single resonant” approach (see Figure 1), where an array of varactors and capacitors are remotely switched, via a microcontroller embedded within a microchip, to resonate with the inherent coil inductance. Then the resonance frequency can be controlled by communication with this microcontroller. In this way, the coil essentially behaves like a single-frequency resonant coil, significantly improving the sensitivity. Here we report on a proof-of-concept prototype of this microchip system.

Experimental: The prototype (see Figure 2) mimics the function of the above concept at 11.1T for the detection of 4 MRI/S nuclei: ^{1}H (470 MHz), ^{19}F (442 MHz), ^{31}P (190 MHz), and ^{13}C (118 MHz). The MR coil is directly connected to a capacitor array, which determines the frequency at which the MR coil resonates. The capacitor array consists of three parallel branches, each containing a varactor for tuning the MR coil. The first branch contains only a varactor. The second and third branches each contain a varactor and PIN diode switch controlled by a FET. The supporting circuitry consists of a controller for the capacitor array and a wireless receiver (consisting of a small antenna, bandpass filters, and envelope detectors) to detect the input desired frequency of operation. The overall digital system level design consists of 3 main-functional components: (1) buffering and amplification of filter input to the microcontroller; (2) automated control of varactors via DAC converters; (3) automated control of the FET switches. Based on the input selected, the controller generates 2 outputs: (1) the appropriate data stream to the multiple-output DAC to generate an analog voltage for the varactors, and (2) a DC voltage for FETs to select the appropriate array branch to be activated. In this fashion, the small antenna detects the input MR frequency-of-interest then the supporting circuit sets the prototype capacitor array.

Results and Discussion: The prototype, with all of the modular components described above, was used to select the 4 MRI/S frequencies, then the performance was measured with a network analyzer. The prototype successfully selected each frequency and the overall capacitor array displayed an equivalent-series-resistance of ~1.0 Ohm for all frequencies.

Conclusions: The use of the varactor-array design enables coil tuning to the input-specified frequency, since the controller provides automatic coil tuning by supplying the appropriate voltages to the varactor array. The overall capacitor array displayed a higher equivalent-series-resistance (~1.0) than expected, which was probably due to losses in the PIN diode switches and perhaps the circuit board. However, a microfabricated chip should circumvent these losses. This prototype study shows the flexibility of the design and illustrates that this design can be adapted to a range of targeted MR frequencies.

Acknowledgements: This work supported by the Advanced Magnetic Resonance and Spectroscopy (AMRIS) Facility in the McKnight Brain Institute of the University of Florida, the NHMFL, and NIH grant (R01 DK047858).

References