Diamagnetic to Paramagnetic Transition in LaCoO$_3$

M. J. R. Hoch, Sarita Nellutla, H. van Tol, Eun Sang Choi, Jun Lu (NHMFL) and J. F. Mitchell (Materials Science Division, Argonne National Lab.)

Introduction
The diamagnetic to paramagnetic spin state transition in LaCoO$_3$ (LCO) that occurs in the temperature range 30 - 120 K is generally attributed to the small energy gap between the Co$^{3+}$ t_{2g} and e_g states. Evidence for this thermally activated transition has been obtained by a number of workers and interpreted as leading to either the intermediate spin state, $t_{2g}^5 e_g^1$ ($S = 1$), or, alternatively, to the high spin state, $t_{2g}^4 e_g^2$ ($S = 2$) of the Co$^{3+}$ ion, with the issue proving highly controversial. In an effort to obtain a consistent description of the temperature dependence of the magnetic and thermal properties of this system we have carried out a series of experiments on a single crystal sample of LCO involving EPR, magnetization and specific heat measurements. The results have been analyzed using a mean field model allowing for antiferromagnetic (AFM) interactions.

Experimental
Measurements of the magnetization in the range 4 – 200 K were made using a VSM in a resistive magnet at the NHMFL with applied fields up to 33 T. Specific heats were determined as a function of T in fields of 0 and 9 T using the MS&T PPMS facility. In addition, EPR measurements in the frequency range 240 – 406 GHz were made on the same sample using high-field EPR spectrometers (CIMAR, EMR).

Results and Discussion
The Co$^{3+}$ EPR signals appear around 30 K and broaden beyond detection for $T > 70$ K. The spin Hamiltonian parameters obtained from the EPR frequency dependence and rotation patterns collected below 60 K, and given in Fig.1, support the atomic-like energy level description of the Co ion that includes the octahedral crystal field, spin-orbit coupling and the slight trigonal distortion of the lattice.[1] The low-lying first excited state is part of the $^5T_{2g}$ (1D) set and has an effective spin $S_{\text{eff}} = 1$. The magnetization results are analyzed using a mean field model allowing for AFM correlations between the spins. As shown in Fig. 2 the model satisfactorily reproduces the measured susceptibility in applied fields of up to 33 T and allows us to calculate the spin contribution to the specific heat in 0 and 9 T fields.

Conclusions
A consistent description of all the experimental results in the range 4- 200 K has been given using an atomic-like (L=2, S=2) description of the Co$^{3+}$ ion in a mean field model with AFM correlations. The gap between the ground state and the triplet state is 170 K with other states at significantly higher energies.

References