Multiple Magnetic Phases in the Frustrated Spin-dimer Compound $\text{Ba}_3\text{Mn}_2\text{O}_8$

E.C. Samulon (Stanford U., Applied Physics); Y.-J. Jo (NHMFL, Tallahassee); G. M. Schmiedeshoff (Occidental College, Physics); M. Jaime (NHMFL, LANL); L. Balicas (NHMFL, Tallahassee); P. Sengupta, C. D. Batista (NHMFL, LANL); I. R. Fisher (Stanford U., Applied Physics)

Introduction

$\text{Ba}_3\text{Mn}_2\text{O}_8$ is a spin-dimer compound based on vertical pairs of $S=1$ 3d3Mn$^{5+}$ ions arranged on a triangular lattice. Antiferromagnetic intradimer exchange leads to a singlet ground state in zero-field, with a gap to excited triplet and quintuplet states. Our experiments at the NHMFL probe the high-field behavior of this system, revealing multiple novel magnetically ordered phases.

Experiments and Results

The phase diagram for temperatures above 0.3 K (figure 1(a) for $H\perp[001]$) has been established via heat capacity, magnetocaloric effect and magnetistriction measurements performed in resistive magnets in cells 12 and 5 respectively. Additional torque magnetometry experiments were also performed down to 25 mK in SCM-1 (Figure 1(b), also for $H\perp[001]$.) Detailed experiments probing the angle-dependence (not shown) indicate a significant anisotropy.

Discussion

The remarkable phase diagram of $\text{Ba}_3\text{Mn}_2\text{O}_8$, and its surprising anisotropy, ultimately arises as a consequence of the competition between the effects of interdimer coupling on a triangular lattice and single ion anisotropy. Details of the resulting magnetic structures are currently being established via additional experiments, but an initial analysis based on a minimal spin Hamiltonian containing all relevant interactions indicates that the ordered phases are novel modulated spiral structures, characterized by multiple order parameters.

Acknowledgements

Work at Stanford University is supported by the NSF under grant DMR 0705087.