Tracking the Conduction Electron Spin Resonance Signal in the Heavy Fermion Metal YbRh$_2$Si$_2$

Ross D. McDonald, Susan Cox, Albert Migliori (NHMFL-LANL) and Zach Fisk (UC Irvine)

Introduction

Previous low temperature magnetization studies of YbRh$_2$Si$_2$ indicate that for magnetic fields applied perpendicular to the c-axis there is a field-induced transition from an itinerant to localized 4f state at 9.9 T [1]. Interestingly, low frequency (9.4 GHz and 34.1 GHz) Electron Spin Resonance (ESR) measurements [2,3] indicate that an ESR spectra characteristic of the Kondo ion Yb$^{3+}$ is observable well below the Kondo temperature, $T_K \approx 25$ K. This is unusual in that the observed EPR linewidth, ΔB, is about 3 orders of magnitude smaller than that inferred from thermodynamic measurements, which predict a linewidth due to spin fluctuations of the order of the Kondo temperature $k_B T_K / g\mu_B \approx 10$ T [2]. These studies [1,2,3] report a strong magnetocrystalline anisotropy evident in both the susceptibility, about a factor of 20 larger for the field applied in the basal plane than along the c-axis, and the spectroscopic g-factor, $g_\perp = 3.5$ for the easy plane vs $g_\parallel = 0.17$ for the c-axis [1,2].

The asymmetric ‘Dysonian’ lineshape of the ESR absorption is typical of the dispersive contributions from Conduction Electron Spin Resonance [4]. For magnetic fields applied in the easy plane the field dependence of magnetization undergoes reduction in slope at the 4f itinerant to localized transition. This ‘kink’ occurs at a magnetization of 1μ_B/Yb. Tracking the CESR signal as a function of frequency and magnetic field thus provides a unique opportunity to study the dynamics of the localization-delocalization transition. This is expected to be evident in the intensity, reflecting the change in the susceptibility; the line shape, reflecting the change in screening; and the g-factor reflecting the change in the correlations in an analogous manner to ‘Heavy Fermion’ mass renormalization.

Experimental

To date, we have measured the CESR spectrum of YbRh$_2$Si$_2$ in the temperature range between 4 K and 0.6 K, and at frequencies between 11 GHz and 120 GHz. This has enabled measurement of the CESR absorption at magnetic fields up to 2.5 T $\approx \frac{1}{4}$ that of the transition for the field perpendicular to the c-axis. All the measurements employed high Q-factor (Q > 5000) resonators to provide the necessary sensitivity; a closed cylindrical resonator at the lower frequencies, and an open etalon resonator at frequencies above 60 GHz. Both resonators were measured in transmission using a millimeter-wave vector network analyzer. Standard 3He and 4He cryogenic techniques were used to control the temperature and the magnetic field applied using a superconducting solenoid. Refinements to the microwave electronics, resonators and waveguide coupling are underway to extend these measurements to the ≈ 500 GHz frequency / 10 T magnetic field range.

Results and Discussion

In the frequency range between 11 GHz and 120 GHz the magnetic field of the absorption has a linear dependence upon frequency yielding a g-factor of 3.48. Within experimental error the g-factor is independent of temperature between 4 K and 0.6 K. Further experimental refinement is necessary to draw any conclusions about possible changes in linewidth or asymmetry.

Conclusions

These preliminary investigations indicate the feasibility of tracking the CESR spectrum to higher frequencies and hence fields, with further experiments planned in magnetic fields exceeding the 4f itinerant to localized transition.

References