Ultrasound Studies on Cs$_2$CuBr$_2$

T. Ono, H. Tanaka (Tokyo Institute of Technology, Physics); A. Suslov (FSU, NHMFL)

Introduction

A quasi-two dimensional antiferromagnet Cs$_2$CuBr$_4$ is a frustrated spin system with a distorted triangular lattice. Quantum-fluctuation-assisted 1/3 magnetization plateau was observed in this material in magnetic field about 14T and temperature $T<T_N=1.4K$ and therefore field-induced incommensurate–commensurate transitions occur at both ends of the plateau [1]. Ultrasonic experiments never have been performed on frustrated spin systems. In this project we performed a first attempt to study interaction of ultrasound waves with the quantum fluctuations and the ultrasound velocity and attenuation in the vicinity of the transitions.

Experimental

Measurements were performed by the pulse – echo technique in magnetic fields of up to 18T at temperature 0.3K (in SCM2 system).

Results and Discussion

The signals observed at low temperature were noisy and magnetic field dependencies were non-reproducible most likely due to microcracks appeared in this fragile material.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research and a 21st Century COE Program at Tokyo Tech “Nanometer-Scale Quantum Physics” both from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by the NHMFL In-House Research Program.

References