Orbital Ordering Transition in Sr$_2$VO$_4$

H. D. Zhou, B. S. Conner, L. Balicas, C. R. Wiebe (NHMFL, FSU)

Introduction

Layered perovskites are well-known to exhibit various intriguing physical phenomena; two celebrated examples include high temperature d-wave superconductivity in La$_{2-x}$Sr$_x$CuO$_4$ (LSCO),[1] and low-temperature p-wave superconductivity in Sr$_2$RuO$_4$.[2] The search for exotic physics in s=1/2 systems has led to the synthesis of analogous materials which retain the K$_2$NiF$_4$ structure. Sr$_2$VO$_4$, which has similar s=1/2 V$^{4+}$ ions as Cu$^{2+}$, has been an elusive target for study due to the difficulty in producing single phase samples. The impetus to synthesize Sr$_2$VO$_4$ originates from a recent LDA calculation which predicts orbital ordering at T ~ 100 K.[3] This energy scale plays a role in properties of the related materials LSCO and Sr$_2$RuO$_4$ – the former has a structural transition, and the formation of a pseudogap as a function of doping, and the latter has a subtle c/a ratio change near 100 K. Until this work, no experimental evidence has been presented on the predicted orbital ordering in tetragonal Sr$_2$VO$_4$.

Results and Discussion

The world’s first samples of tetragonal Sr$_2$VO$_4$ were prepared in the Quantum Materials Laboratory at the NHMFL. The predicted orbital ordering transition at $T_{00} = 97$ K was observed through a characteristic drop in the DC susceptibility.[4] Using the new high resolution low temperature x-ray diffraction system at the NHMFL, the chemical structure was elucidated as a function of temperature to observe the magnetoelastic coupling of the lattice. The orbital ordering process was discovered to occur in stages – at $T = 122$ K, there is the onset of short-ranged ordering, followed by the coexistence of two phases as T_{00} is approached from above. Below the transition, there exists only one tetragonal phase with an elongated c-axis and shortened a-axis, consistent with the LDA calculations of occupied orbitals oriented predominantly along the c direction.[3]

Conclusions

The synthesis and characterization of Sr$_2$VO$_4$ has verified the predicted orbital ordering at 97 K. Future doping studies will be performed to elucidate the rich phase diagram of this material by inducing holes upon the V$^{4+}$ sites. Experiments are already underway to probe the transition with pressure measurements, followed by neutron scattering studies of the magnetic behavior on single crystals.

Acknowledgements

This work is supported from NSF grant DMR – 0084173 and the IHRP program.

References

[1] For a review, see M. Imada et al., Rev. of Mod. Physics 70, 1039 (1998).