Irreversibility Field of High Temperature Superconductor Bi-2212

J. Jiang, J. Jaroszynski, V. Griffin, N. C. Craig, E. E. Hellstrom, D.C. Larbalestier (FSU-NHMFL, ASC)

Introduction

Bi-2212 round wire is one of our first choices as a conductor for new generations of superconducting magnets reaching 25-30 T fields well beyond those possible with Nb$_3$Sn. Present experiments are part of the R&D needed to build a 7T Bi-2212 insert magnet, which is to be tested in the NHMFL 195 mm 19.5T Bitter solenoid.

Experimental

Transport resistivity measurements of irreversibility field H_{irr} using small currents were performed in the NHMFL 33T resistive magnet for Bi-2212 samples. We measured both round wire and tapes samples by fixing temperature and sweeping field. The critical state irreversibility field H_K was measured by using a 14T Oxford VSM.

Results and Discussion

As seen in Fig. 1a, small current probing shows that H_{irr} of round wire Bi-2212 falls between that of the two tape orientations (field perpendicular and parallel).

As shown in Fig 1b, H_{irr} data suggest transitions at temperatures as much as 15K higher than those derived from extrapolations of a full critical state measured by VSM (e.g. the Kramer function fit to zero J_c at H_K).

The J_c of Bi-2212 conductor to 45T was measured by Trociewitz et al. in 2005 and these data showed the remarkable result that the pinning force J_cB was not clearly peaking even at 45T. Scaling laws for J_c are now becoming important for conductor designs and conductor quality has been getting better. It becomes important therefore to understand what H_{irr} is more precisely. The data shown in Fig. 1b point to the inadequacy of measuring H_{irr} by the usual small current measurements, perhaps because the round wire conductor is not textured and so more favorably oriented grains provide a percolative superconducting path for the less favorably oriented grains, which provide the cut off for J_c at H_K when they lose superconductivity.

References

Figure 1: Irreversibility fields of a polycrystalline Bi-2212 round wire and tape determined by transport resistivity and by extrapolation of the critical state magnetic moment to zero using a vibrating sample magnetometry (VSM), as compared to a recent NMR single crystal study (Chen, Halperin et al. Nature Physics 3 (4): 239-242 APR 2007.)