High-Field 121Sb NMR in Amorphous Ge$_2$Sb$_2$Te$_x$ ($x = 4, 5, 7$) Thin Films

D.C. Bobela (University of Utah, Physics); T. Su (Colorado School of Mines, Physics); P. C. Taylor (Colorado School of Mines, Physics); A.P. Reyes (NHMFL); P.L. Kuhns (NHMFL)

Introduction

Ge-Sb-Te based amorphous thin films have attracted increasing interest as the materials of choice for phase-change-memory devices. Until now, the local order in these materials has been hotly debated. A particularly important question is how the local bonding symmetry and bond lengths change upon transition between the crystalline and amorphous phases. Using high-field 121Sb NMR, we studied the quadrupole coupling constant and asymmetry parameter (η), which characterize the local bonding symmetry and bond lengths around Sn sites in amorphous Ge-Sb-Te films.

Experimental

The experiments were carried out at the NHMFL using a DC resistive magnet (cell 7). Three samples of amorphous Ge$_2$Sb$_2$Te$_x$ ($x=4,5,7$) were studied. The spectra were obtained by sweeping the DC field. At each value of the field, the resonance signal was obtained by a solid-echo pulse sequence to construct a histogram. Details can be found elsewhere [1].

Results and Discussion

Figure 1 shows a typical 121Sb NMR lineshape. Solid squares represent the lineshape in amorphous Ge$_2$Sb$_2$Te$_5$, and the dashed line represents a simulation. The thick solid line near zero represents the lineshape of the crystalline Ge$_2$Sb$_2$Te$_5$ on the same scale. The linewidth of the amorphous sample is about 30 times that in the crystalline phase. The large quadrupole coupling in the amorphous phase provides evidence of a Te-Sb bond shortening upon transition to the amorphous phase. Spectral simulations suggest that the sites in the amorphous phase, on average, display bonding symmetry characterized by $\eta \approx 1$.

These results indicate that Ge$_2$Sb$_2$Te$_5$ thin films behave differently than typical chalcogenide glasses. In typical chalcogenide glasses, such as As$_2$Se$_3$, the local bonding symmetry and bond lengths at the three-fold coordinated atoms (As) are very similar between the amorphous and crystalline phases, and the disorder is mostly manifested by the distortion of the bonding symmetry of the two-fold coordinated atoms (Se). The results in amorphous Ge$_2$Sb$_2$Te$_3$ strongly contrast this typical picture, and may indicate that the mechanism of transition from the amorphous to the crystalline phase in Ge$_2$Sb$_2$Te$_5$ is qualitatively different from that of the typical chalcogenide glasses.

Conclusions

In conclusion, the high-field 121Sb NMR has provided a detailed picture of the local bonding symmetry that is otherwise difficult to obtain. These details will facilitate further understanding of the optoelectronic properties in these materials.

Acknowledgements

This work is partially supported by AFOSR (AFRL) under subcontract number DE-FC36-07G017053 and by NSF under grant number DMR-0702351.

References