HIGH RESOLUTION 15N NMR OF ANTIFERROELECTRIC PHASE TRANSITION IN A SINGLE CRYSTAL OF AMMONIUM DIHYDROGEN ARSENATE, NH$_4$H$_2$AsO$_4$

O. Gunaydin Sen (NHMFL-FSU); R. Fu (NHMFL); N.S. Dalal (NHMFL-FSU)

We report high-resolution 15N NMR measurements of the paraelectric to antiferroelectric phase transition (T_N=216K) of the model hydrogen-bonded antiferroelectric NH$_4$H$_2$AsO$_4$ (ADA). We specifically examined whether the NH$_4^+$ ions undergo a displacive or an order-disorder behavior at the phase transition. The high-resolution NMR measurements on 15N-enriched single crystals were made initially on a Bruker Avance 600 NMR spectrometer at the NHMFL, and detailed measurements were made with a Varian UNITY INOVA 500 MHz wide-bore system. Variable temperature experiments with 1H-15N cross polarization and proton decoupling using a spinning rate of 5 kHz have been carried out. The temperature dependence of the isotropic chemical shift, δ_{iso} (Figure 1), and of the spin-lattice relaxation time, T_1 (Figure 2), shows clear anomalies at the phase transition. These results are interpreted as evidence for the coexistence of an order-disorder and displacive behavior at the NH$_4^+$ site [1, 2].

Fig. 1. Temperature dependence of δ_{iso} of 15N in ADA. The arrow indicates the antiferroelectric transition temperature, T_N. A gradual change and then a clear jump mark the phase transition.

Fig. 2. Temperature dependence of T_1 for 15N in ADA at a resonance frequency of 50.7 MHz (B_0=11.4 T).

References
