The interlayer magnetoresistance ρ_{zz} of the organic metal κ-(BEDT-TTF)$_2$Cu(NCS)$_2$ has been studied as a function of field (0-45 T) and temperature (0.5-40 K). The peak in ρ_{zz} seen in in-plane fields, a definitive signature of interlayer coherence, remains to temperatures exceeding the Anderson criterion for incoherent transport by a factor ~ 30. Angle-dependent magnetoresistance oscillations (Fig. 1) were modeled using an approach based on field-induced quasiparticle paths on a 3D Fermi surface, to yield the temperature (T) dependence of the scattering rate (Fig. 2). The results suggest that the scattering rate does not vary strongly over the Fermi surface, and that it has a T^2 dependence due to electron-electron scattering (Fig. 2) [1]. This observation calls into question some of the models for superconductivity in the organics [1].

Figure 1 (left). Comparison of experimental ρ_{zz} AMRO data (a) and the numerical simulation (b) method described in [1] ($T = 1.5$ K); for the lowest to the highest traces, the field is 32, 34, 36, 38, 40, 42 and 44 T (no offset is applied). Here, the AMRO result from quasi-one-dimensional (Q1D) Fermi-surface sections [1]. (c) AMRO data for quasi-two-dimensional (Q2D) Fermi-surface sections ($T = 1.5$ K and fields of 20 (lowest), 24 and 28 T (highest). The arrow indicates the amplitude of a particular AMRO feature. (d) Experimental normalized AMRO amplitudes plotted as a function of the orbit angular frequency times scattering time; data all fall on a common curve for a particular plane of rotation [1]. Figure 2 (right) Scattering time deduced from AMROs due to the Q1D Fermi surface sections (a) and the Q2D Fermi-surface sections (b) versus T. Consistent scattering times are deduced from several AMRO features at fields of 30 T and 45 T. The T^2 scattering rates are identical to within experimental errors, even though the AMROs in (a) and (b) are produced by different Fermi-surface sections.