DE HAAS-VAN ALPHEN STUDY OF THE FERMI SURFACE OF Ce\textsubscript{x}La\textsubscript{1-x}B\textsubscript{6} AS A FUNCTION OF COMPOSITION: THE EVOLUTION OF FIELD-DEPENDENT QUASIPARTICLE EFFECTIVE MASSES

I. Mihut, J. Singleton, A. Migliori (NHMFL-LANL); L. Pham (Univ. of California at Irvine); C. Capan (Louisiana State Univ.); Z. Fisk (Univ. of California at Irvine)

Introduction

LaB\textsubscript{6} is a paramagnetic metal with an empty 4f shell whereas CeB\textsubscript{6} is a dense Kondo compound. The Fermi surface of CeB\textsubscript{6} resembles closely that of LaB\textsubscript{6}, suggesting that f electron might be localized. However, the large mass enhancement in CeB\textsubscript{6} suggest that the f electrons in CeB\textsubscript{6} are rather itinerant than localized. When the La ions are gradually replaced by Ce ions, which introduce the f electrons into the metal, it has been found that the FS topology and the quasiparticle effective masses transformed continuously from that of pure LaB\textsubscript{6} to that of pure CeB\textsubscript{6}. Moreover it is claimed that the dHvA signal originates from only a single spin FS sheet as the Ce concentration increases.

Results and Discussion

The de Haas-van Alphen effect has been studied in single crystals of Ce\textsubscript{x}La\textsubscript{1-x}B\textsubscript{6} (0 < x < 0.075) using pulsed magnetic fields at NHMFL-LANL of up to 60 T and temperatures 0.38 K < T < 4.0 K. The low-field effective mass grows smoothly with increasing x. Moreover, for x > 0, the effective mass becomes a function of magnetic field, decreasing as the field rises. These results may be fitted using the extended Lifshitz-Kosevich formalism due to Wasserman, the decrease in mass reflecting the suppression of spin fluctuations by the field. The data also show that a previously-observed effect, attributed to complete spin polarization of one of the Fermi-surface sheets for x ≥ 0.05, is in fact an artifact of the field-dependent mass, ignored in previous works.

![Figure 1](image1.png)

Figure 1 Effective mass of α\textsubscript{3} orbit (F= 7800 kT) vs. B for different Ce doping concentrations.

Figure 2: Fit of the effective mass of α\textsubscript{3} orbit using Wasserman function2 for Ce 6.25% and 7.5% doping concentration. Similar fits are obtained for lower concentrations.

Acknowledgements

The work at the NHMFL, Los Alamos was carried out under the auspices of the NSF, The State of Florida and the US Department of Energy.

References
