SELF-ASSEMBLY OF THE UNIQUE HETEROTRIMETALLIC Cu/Co/M COMPLEXES POSSESSING TRIANGULAR ANTIFERROMAGNETIC \{Cu_2CoPb\}_2 AND LINEAR FERROMAGNETIC \{Cu_2CoCd_2\} CORES

Dmytro S. Nesterov, Vladimir N. Kokozay (Taras Shevchenko U., Kiev, Ukraine), Brian W. Skelton (University of Western Australia), Julia Jezierska (Wroclaw U., Poland), Andrew Ozarowski (NHMFL)

Introduction

Two novel heterotrimetallic complexes possessing discrete heterotrimetallic units have been prepared. The CuIICoII core in the octanuclear complex \([Cu_2CoPbCl_4(L)_4]\) \((1)\) is triangular, while a linear arrangement was found in the pentanuclear molecule of \([Cu_2CoCd_2Cl_6(L)_4(HOME)_2]\) \((2)\). HL is 2-(dimethylamino)ethanol.

Experimental

High-frequency EPR spectra were recorded on the transmission spectrometer at the EMR facility of the NHMFL. Magnetic susceptibility data of a powdered sample were measured with a SQUID magnetometer (Quantum Design MPMSXL-5) over the temperature range 1.8–300 K at the magnetic induction of 0.5 T. X-Ray structure was determined on a Bruker SMART CCD area-detector diffractometer (ω rotation scans with narrow frames) equipped with graphite monochromated Mo-K\(\alpha\) radiation (\(\lambda = 0.71073\) Å).

Results and Discussion

The exchange interactions Co-Cu and Cu-Cu as well as zero-field splitting on high-spin cobalt(II) ions had to be taken into account in fitting the magnetic susceptibility data. The Hamiltonian was used in a form

\[
H = J_{CoCu}(S_{Co}S_{Cu}+S_{Co}S_{Cu}^{+}) + J_{CuCu}(S_{Cu}S_{Cu}^{+}) + D_{Co}S_{zCo}^{2} + D_{CoCu}(S_{zCo}S_{zCu}^{+}S_{zCo}^{+}S_{zCu}) + \mu_{B}B(g_{Co}S_{Co}^{+}g_{Cu}S_{Cu}^{+}g_{Co}S_{Co}g_{Cu}S_{Cu})
\]

The \(g\) components of CuII ion, \(g_{xy} = 2.051\) and \(g_{z} = 2.237\) were found from the high-field EPR spectra. Other parameters, shown in Fig. 1 caption resulted from the fitting of the magnetic susceptibility data. The difference in \(D_{Co}\) magnitudes in 1 and 2 can be rationalized. It is known that high-spin CoII shows in tetrahedral geometry moderately large zero-field splitting of several wavenumbers, while extremely large splitting of sometimes hundreds of wavenumbers was observed in octahedral geometry\(^1\). Also, the pattern of exchange interactions appears to be in agreement with the structures – in 1 the angles Cu(3)–O(4)–Cu(2), Cu(2)–O(2)–Co(4) and Cu(3)–O(3)–Co(4) are 113.5(2)°, 107.6(2)° and 108.0(2)°, respectively, thus favoring antiferromagnetic exchange interactions. In 2, the angles [93.5(3)° for Cu(2)–O(1)–Co(3) and 97.0(4)° for Cu(2)–O(2)–Co(3)] that are close to the borderline separating antiferromagnetic interactions from ferromagnetic interactions (97°), result in \(J_{CuCo}\) close to zero.

Acknowledgements

This work was supported by the INTAS (Ukraine, Project 03-51-4532) and by the NHMFL. The NHMFL is funded by the NSF through the Cooperative Agreement No. DMR-0084173 and the State of Florida.

References