PROTON-DETECTED 14N MAS NMR USING HOMONUCLEAR DECOUPLED ROTARY RESONANCE

Z. Gan (NHMFL); J. Amoureux and J. Trébosc (University of Lille)

Introduction

Indirect detection through proton can in principle enhances the sensitivity dramatically especially for low-γ nuclei like 14N. However, proton T_2 is usually short in rigid solids and can offset the sensitivity gain. There are two ways to reduce this T_2 loss: either making the T_2 longer or using the largest coupling possible for the coherence transfer. We report here homonuclear decoupled rotary resonance for 1H/14N HMQC in solids. By using the so-called $n=2$ rotary resonance, the 1H/14N heteronuclear dipolar interaction is efficiently recoupled under MAS while the proton homonuclear dipolar interactions remains decoupled maintaining long T_2.

Experimental

The 1H/14N double-resonance experiment was performed on a Bruker Avance-800 spectrometer at the University of Lille, France with a 3.2 mm magic-angle spinning probe.

Results and Discussion

Figure 1 shows the 1H/14N HMQC pulse sequences. The 1H/14N dipolar recoupling is achieved with a simple rotary resonance scheme with rf field matching twice of the spinning frequency. The $n=2$ rotary resonance recouples only the heteronuclear dipolar and CSA interactions but not the homonuclear dipolar coupling due to its bilinear nature of spin operators. The CSA is refocused with the π-pulse in the middle leaving only the heteronuclear dipolar coupling for 1H/14N HMQC. There are a couple of advantages of using rotary resonance. First, the cw recoupling is simple and susceptible to spinning frequency fluctuation. Second, the proton T_2 is not shorten by the rf. In fact, we have found that proton T_2 under rotary resonance is even longer than that under plain MAS. The 2D spectrum of glycine shows 1H/14N correlations with 400μs coherence transfer. The proton T_2 loss is less than 50% for this mixing time which already reaches the steady state for NH$_3$. For the long range correlation from the CH$_2$ proton, the coherence transfer is still in the initial build-up. Nevertheless, the signal intensity is still evident from the shoulder on the right.

Conclusions

1H/14N HMQC spectra can be obtained efficiently with the $n=2$ rotary resonance dipolar recoupling. Such an experiment gains sensitivity from the more sensitivity proton detection and near 100% proton natural abundance at the cost of some resolution as compared to 13C detected HMQC method.

Acknowledgements

Z.G thanks J.P. and University of Lille for hosting a visit during which this project was carried out.

References