\textbf{13}C/14N HMQC WITH ROTARY RESONANCE AND REDOR DIPOLAR RECOUPLING}

Z. Gan (NHMFL)

\section*{Introduction}

14N is the abundant (99.6\%) isotope of one of the most important elements in chemistry. We have recently introduced an indirect approach for 14N NMR detected through 13C using J and residual 13C/14N second-order quadrupolar-dipolar couplings under magic-angle spinning [1,2]. Such an experiment obtains high resolution 14N spectra separated by 13C chemical shift allowing for the measurement of 14N quadrupolar coupling. This report describes the use of dipolar recoupling with rotary resonance [3] and REDOR [4] for the 13C/14N HMQC experiment. The much larger first-order 13C/14N dipolar coupling enhances the efficiency of the HMQC coherence transfer and allows for long range correlation.

\section*{Experimental}

The 13C/14N/1H triple-resonance experiment was performed on a Bruker DRX-600 spectrometer at the NHMFL with a 4mm magic-angle spinning probe.

\section*{Results and Discussion}

Figure 1 shows the 13C/14N HMQC pulse sequences and their results with natural abundant glycine each acquired in less than 10 min. The one on the left uses the REDOR sequence for HMQC coherence transfer. REDOR dipolar recoupling is broadband, but is susceptible to spinning frequency fluctuation. With the ~1 Hz MAS frequency control, the CO spectrum with a larger CSA and longer mixing time (6.4ms) shows some t_1-noise. The HMQC experiment using rotary resonance (right) is band-selective but it has the advantages of a longer and more stable T_2. As the results show, the 2D spectra have higher peak intensities and cleaner spectra without any t_1-noise.

\section*{Conclusions}

13C/14N HMQC spectra can be obtained efficiently under MAS with REDOR and rotary resonance dipolar recoupling.

\section*{Acknowledgements}

This work has been supported by the National High Magnetic Field Laboratory and National Science Foundation through Cooperative Agreement (DMR-0084173)

\section*{References}