\(^{13}\text{C}/^{14}\text{N} \text{ DISTANCE MEASUREMENT IN NATURAL ABUNDANT SOLIDS USING R-RESPDOR NMR}\)

Z. Gan (NHMFL)

Introduction

The capability of measuring internuclear distance has made solid-state NMR a powerful tool for structural characterization. This report presents a robust solid state NMR method for simultaneously measuring multiple \(^{13}\text{C}/^{14}\text{N} \) distances in natural abundant solids. \(^{14}\text{N} \) is a highly abundant (99.6\%) spin-1 quadrupolar nucleus and its distances with surrounding carbons provide useful information for molecular structure and spectral assignment. The rotary resonance echo saturation pulse double resonance (R-RESPDOR) method described here introduces two important changes to the rotational echo adiabatic passage double resonance (REAPDOR) [1] previously developed for measuring distances between a spin-1/2 and a quadrupolar spin. First, it uses a simple recoupling scheme called rotary resonance which is susceptible to spinning frequency fluctuation. Second, it uses saturation pulse to induce \(^{13}\text{C}/^{14}\text{N} \) dipolar dephasing which not only achieves efficient dipolar dephasing but also smoothes out the orientation and other parameter dependences allowing simple data interpretation [2].

Experimental

The \(^{13}\text{C}/^{14}\text{N}/^{1}\text{H} \) triple-resonance experiment was performed on a Bruker DRX-600 spectrometer at the NHMFL with a 4mm magic-angle spinning probe.

Results and Discussion

Figure 1 shows the R-RESPDOR pulse sequence and the \(^{13}\text{C}/^{14}\text{N} \) dipolar coupling measurement using L-tryptophan as a model compound. \(^{13}\text{C}/^{14}\text{N} \) dipolar dephasing curves between the ring nitrogen and eight aromatic carbons are measured simultaneously from a single R-RESPDOR experiment. Figure 1 also shows the simulations using dipolar coupling frequencies obtained from a separate \(^{13}\text{C}/^{15}\text{N} \) REDOR. With the saturation pulse, the universal R-RESPDOR function depends on only the product of dipolar coupling frequency \(D\) and dephasing time \(\tau\).

\[
\Delta S / S_0 = \frac{4}{9}[1 - S_0(\frac{\pi}{4}Dr)] + \frac{2}{9}[1 - S_0(\frac{\pi}{2}Dr)]
\]

[1]

The listed dipolar coupling frequencies can lead to carbon/nitrogen distances ranging from one to four chemical bonds.

Conclusions

The capability of measuring multiple \(^{13}\text{C}/^{14}\text{N} \) distances simultaneously at natural abundance makes R-RESPDOR a potentially useful tool for spectral assignment and structural analysis of small to medium size molecules without the need of isotope labeling.

Acknowledgements

This work has been supported by the National High Magnetic Field Laboratory and National Science Foundation through Cooperative Agreement (DMR-0084173)

References