MAGNETIZATION OF LiCu_2O_2 UNDER HIGH MAGNETIC FIELDS

J. W. Kim, Kee Hoon Kim (Seoul National University, Physics & Astronomy); S. Park, S.-W. Cheong (Rutgers University, Physics & Astronomy); F. Balakirev, N. Harrison (LANL-NHMFL)

Introduction

Since the renaissance of multiferroics, non-collinear spiral magnets have drawn much attention with possible multiferroicity via spin-current model [1]. LiCu$_2$O$_2$ is another material which exhibits spiral magnetic order investigated by neutron scattering experiments [2]. But due to the $S=1/2$ spins of Cu$^{2+}$ and its quasi-one-dimensional character, quantum fluctuations are expected as well as classical spin order. In this sense, LiCu$_2$O$_2$ may be the unique multiferroic material which exhibits unusual quantum spin effects.

Before investigating the multiferroic behavior in this compound, we have performed the magnetization experiment up to 30 T to understand the spin structure of LiCu$_2$O$_2$ at high magnetic field.

Experimental

The magnetization was measured with a compensated coil susceptometer adapted to use in pulse magnetic-fields up to 50 T. The short pulse magnet (cell 4) at LANL-NHMFL was used. Magnetic field is applied along the a and c-axis of the crystal.

Results and Discussion

Fig. 1 summarizes magnetization measurements as a function of magnetic field at low temperatures. Along the a-axis, the magnetization is linear up to ~17 T. But the signal becomes noisy above 17 T. When the magnetic field is applied along the c-direction, signal is linear up to ~10 T, but noisy at higher fields.

Conclusions

The problem of resolution can be circumvented by either increasing the size of the sample or using a different magnetometer with better resolution. The multiferroic properties of LiCu$_2$O$_2$ is planned to be measured under magnetic fields by dielectric constant and polarization measurement by the short pulse magnet.

Acknowledgements

This work is supported by the National Research Laboratory program (M10600000238) by the Korean Ministry of Science and Technology. The work at NHMFL is performed under the auspices of the National Science Foundation, the State of Florida, and the U.S. Department of Energy.

References