HIGH RESOLUTION 15N of FERROELECTRIC PHASE TRANSITION IN a SINGLE CRYSTAL of AMMONIUM SULFATE, (NH$_4$)$_2$H$_2$SO$_4$

O. Gunaydin Sen, (NHMFL/FSU, Chemistry and Biochemistry); R. Fu, (NHMFL); N., Dalal, (NHMFL/FSU, Chemistry and Biochemistry)

High Resolution NMR has been used for investigating the paraelectric-ferroelectric transition in (NH$_4$)$_2$SO$_4$ at T_c~223K. Initial 15N spectra were obtained on a Bruker DMX600 NMR spectrometer, but detailed measurements were made with a Varian UNITYINOVA 500 MHz wide-bore system. Variable temperature experiments with 1H-15N cross polarization and proton decoupling with spinning speed of 5 kHz have been carried out. Figure 1 shows the spectra around the phase transition. The isotropic chemical shift exhibits an approximately linear temperature dependence within 2K of T_N, and then changes discontinuously, followed by another dependence which is shown in figure 2. The sharp anomaly around T_N implies that the NH$_4^+$ ions undergo a displacive transition at T_N. This result provides a new avenue for studying ferroelectric transitions. 2D experiments will be performed to understand the phase transition mechanism better.

Figure 1. 15N MAS NMR spectra of (NH$_4$)$_2$SO$_4$ at different temperatures.

Figure 2. Plot of 15N chemical shift of (NH$_4$)$_2$SO$_4$ as a function of temperature.