NONEXPERIMENTAL RELAXATIONS IN A 2D ELECTRON SYSTEM IN SILICON

J. Jaroszyński, D. Popović (NHMFL)

Introduction

The relaxations of conductivity have been studied in a strongly disordered 2D electron system (2DES) in Si after excitation far from equilibrium by a rapid change of carrier density n_i, controlled by the gate voltage $V_{g,i}$, at low temperatures T. The observed nonequilibrium dynamics strongly suggests the existence of a glass transition at $T=0$ in the range of n_i that spans both the insulating regime and the unconventional conducting regime where $k_F l < l$ (k_F - Fermi wave vector, l- mean free path).

Experimental

Measurements were performed on a 2DES in Si (the peak 4.2 K mobility $\mu = 0.06$ m2/Vs with the applied substrate bias of -2 V) with the sample dimensions 1×90 and $2 \times 50 \mu$m2. The samples and the measurement technique have been described in more detail elsewhere [1]. The experimental procedure was as follows. The sample was cooled from 10 K to the place on the metallic side of the metal-insulator transition, albeit in the regime where 2D electrons play a dominant role in the observed out-of-equilibrium dynamics. The onset of glassy dynamics takes both the insulating regime and the unconventional conducting regime where $n_i V_{g,f}$ and T were measured. By warming up to 10 K and cooling down again to T with the $V_{g,f}$ applied, the equilibrium conductivity $\sigma_0(V_{g,f}, T)$ corresponding to the given $V_{g,f}$ and T was obtained. At the end of the run, the sample was warmed up to 10 K, gate voltage changed back to the same $V_{g,f}$, and the experiment was repeated at a different T for the same $V_{g,f}$. Finally, the whole procedure was repeated for different values of $V_{g,f}$.

Results and Discussion

Figure 1 shows the relaxations of conductivity, $\sigma(t, V_{g,f}, T)$, normalized to the corresponding $\sigma_0(V_{g,f}, T)$ for different T and a fixed $V_{g,f}$. It is striking that $\sigma(t)$ first overshoots its equilibrium value, goes through a minimum, and only then approaches σ_0.

The minimum in σ shifts to longer times with decreasing T until, at sufficiently low T, it falls out of the time window of the measurements. A detailed and careful analysis of the data for times before the minimum in $\sigma(t)$ reveals [2] that the relaxations are strongly nonexponential: $\sigma(t,T)/\sigma_0(T) \propto t^\alpha \exp(-t/\tau) \sim 0<\alpha<0.4$ and $0.2<\beta<0.45$, where $\tau \propto \exp(\gamma n_s^{1/2}) \exp(E_d/T)$, $E_d \approx 20$ K. These results are consistent with the continuous phase transition occurring at $T_d=0$. At times above the minimum in $\sigma(t)$, the system equilibrates via a simple exponential process with a characteristic time $\tau \sim \exp(E_d/T)$, where $E_d \approx 57$ K independent of n_i. The data show that, even though the system is, strictly speaking, glassy only at $T=0$, at low enough T ($i.e.$ < 1 K) the dynamics is glassy on all experimentally accessible time scales.

Conclusions

The dramatic and precise dependence of the relaxations on n_i and T strongly suggests (a) the transition to a glassy phase as $T \to 0$, and (b) the Coulomb interactions between 2D electrons play a dominant role in the observed out-of-equilibrium dynamics. The onset of glassy dynamics takes place on the metallic side of the metal-insulator transition, albeit in the regime where $k_F l < l$. These results support our earlier conclusions [1] based on the noise measurements, and exhibit many similarities to the behavior of other glassy materials.

Acknowledgements

This work was supported by NSF Grant No. DMR-0403491 and the NHMFL.

References