SOLID STATE 1H/15N CHEMICAL SHIFT CORRELATION EXPERIMENTS OF ALIGNED SAMPLES AT 900 MHZ

R. Fu (NHMFL); C. Li, T.A. Cross (NHMFL/FSU, Chemistry and Biochemistry)

Polarization inversion spin exchange at the magic angle (PISEMA) (1), which correlates the orientation-dependent, anisotropic 1H-15N dipole-dipole couplings and 15N chemical shifts, has become a powerful tool to obtain high-resolution orientational restraints from membrane proteins in a lamellar phase lipid environment. One of the major problems in the structural determination using PISEMA is the multiple solutions associated with the orientational restraints. Generally, a peptide plane has four possible orientations with respect to B_0 that fulfill the same 15N chemical shift and 15N-1H dipolar coupling. Therefore, the 1H anisotropic chemical shift restraint from the peptide plane, which is not observed in the PISEMA spectra, is believed to be an important parameter for structural characterization of aligned membrane proteins.

In this report, we use high fields to obtain high-resolution 1H chemical shifts of aligned samples. Fig. 1 shows the anisotropic 1H-15N chemical shift correlation spectrum of a static 15N-acetyl-valine (NAV) crystal at 900 MHz recorded with and without 15N decoupling during 1H chemical shift evolution. Two 15N resonances were observed at this arbitrary orientation due to the existence of two inequivalent molecules per unit cell in the crystal. After considering the scaling factor in the 1H chemical shift dimension resulting from 1H homonuclear dipolar decoupling (2), the 1H linewidth was 1.2 ppm, while it was 2.1 ppm from the same crystal sample at 300 MHz. Without 15N decoupling, the corresponding 1H-15N dipolar couplings split each of the resonances into two peaks. Therefore, such experiments allow us to obtain the 1H-15N dipolar couplings, as in PISEMA experiments (1), and to obtain the additional anisotropic 1H chemical shift restraints, without a need to perform time-consuming three-dimensional experiments (3,4) for obtaining the 15N and 1H chemical shifts and their 15N-1H dipolar coupling. Therefore, with better 1H resolution at 900 MHz, it will be possible to introduce 1H anisotropic chemical shift restraints into the structural determination to eliminate some of the degeneracies.

Fig. 1. 15N-1H correlation spectra of a NAV crystal at 900 MHz with (Top) and without (Bottom) 15N decoupling during the 1H chemical shift evolution. The magic sandwich high order truncation (MSHOT) homonuclear decoupling sequence (2) was used in the t_1 dimension. A short cross polarization contact time of 120 μs was used to ensure that the 15N magnetization was transferred from its closest 1H. The 1H B_1 fields were 92 and 50 kHz during the MSHOT decoupling and cross polarization, respectively, while the 15N B_1 field of 50 kHz was used for cross polarization and 15N decoupling in the t_1 dimension. The quadrature detection in the t_1 dimension was achieved using the States phase cycling. In the spectra, the scaling factor has been taken into account in the 1H chemical shift dimension. The 1H chemical shift was referenced to the water signal of NH_4NO_3 solution at 4.7 ppm.

References