LOW-TEMPERATURE RESISTANCE NOISE STUDY IN UNDERDOPED CUPRATES

I. Raičević, J. Jaroszyński, D. Popović (NHMFL); C. Panagopoulos (University of Cambridge, Cavendish Laboratory); T. Sasagawa (University of Tokyo, Advanced Materials Science)

Introduction

Studies of high-transition-temperature superconductors (HTS) in the underdoped regime have revealed spin glass ordering at low temperatures, and suggested analogous effects in the charge sector [1]. The notion of charge glassiness is further supported by the measurements of the dielectric constant in La$_{2-x}$Sr$_x$CuO$_4$ and La$_{2-x}$Sr$_x$NiO$_4$, the materials which, although not superconducting, exhibit the spin response that is almost identical to that of cuprate superconductors [2]. In order to probe the dynamics of charge carriers in the underdoped HTS La$_{2-x}$Sr$_x$CuO$_4$, we employ resistance noise spectroscopy, a technique that has proved to be extremely successful in studies of various glassy systems.

Experimental

Measurements of resistance fluctuations were carried out on a single crystal of La$_{2-x}$Sr$_x$CuO$_4$ with $x=0.03$. In order to minimize the effects of contact noise and temperature (T) fluctuations, resistance noise was measured using a five-probe balanced bridge technique (Fig. 2 inset). The excitation current I was kept low enough to avoid heating of the sample. The background noise was measured by setting $I=0$ for all T. This white noise was subtracted from the measured power spectra.

Results and Discussion

Fig. 1 shows the fluctuations of resistance $\Delta R = R - \langle R \rangle$, where $\langle \rangle$ denotes the time average, measured along c-axis at different T. It is apparent that the amplitude of the fluctuations increases as T decreases. A typical power spectrum S_R of the relative fluctuations $\Delta R/\langle R \rangle$ is presented in Fig. 2. The spectra follow the empirical law $S_R \sim 1/f^\alpha$, where α increases dramatically from 0.6 to 1.7 as T decreases from 0.3 K to 0.1 K. The observed non-Gaussian noise is also analyzed by calculating the second spectrum, a fourth order noise statistic. The second spectra are found to be non-white in the entire T range studied so far, strongly suggesting cooperative charge dynamics. These results are similar to those obtained in some Coulomb glass systems [3].

Conclusions

While our results support the notion of a charge glass order in the underdoped La$_{2-x}$Sr$_x$CuO$_4$, further measurements over an extended temperature range, in a magnetic field, as well as noise measurements of the in-plane resistivity are necessary in order to obtain more definitive information on charge ordering and the nature of the electronic phases in HTS.

Acknowledgements

This work was supported by NSF Grant No. DMR-0403491 and the NHMFL.

References