CHANGES IN MUSCLE T_2 RELAXATION PROPERTIES FOLLOWING SPINAL CORD INJURY AND REHABILITATION

M. Liu (UFL, Physical Therapy); P. Bose (UFL, Neuroscience); G.A. Walter (UFL, Physiology); D.K. Anderson (Malcom Randall VAMC); F. Thompson (UFL, Neuroscience); K. Vandenborne (UFL, Physical Therapy)

Introduction

Magnetic resonance (MR) is a noninvasive method, which can be implemented to study structural and biochemical properties of skeletal muscle. Changes in proton transverse relaxation (T_2) properties have been used to study muscle cellular damage in healthy and diseased muscle, as well as muscle activation during a variety of exercise protocols. The objective of this study was to implement MR imaging to characterize the T_2 relaxation properties of the rat hindlimb muscles following spinal cord injury (SCI) and locomotor training.

Experimental

Spinal cord contusion injuries were produced using a NYU (New York University) impactor device. Twenty-four Sprague Dawley rats were assigned to either treadmill training, cycle training or an untrained group. Both training protocols were started at 1-week post injury and were performed continuously for 3 months, 5 days/week, 2 trials/day, 20 minutes/trial. Images of the lower hindlimbs were acquired using a spin-echo sequence with a pulse repetition time of 2 sec, 256x128 matrix, 2.5 x 2.5 cm2 field of view, 1-mm slice thickness, and echo times of 14 ms and 40 ms. T_2 measurements were performed in the tibialis anterior, soleus, and gastrocnemius muscles. The muscle boundaries were outlined, and the mean muscle T_2 values and a T_2 map were calculated according to a previously described method, assuming a single exponential decay with respect to TE. The mean muscle T_2 value was determined in at least 8 image slices for each muscle (1mm thickness).

Results and Discussion

Following midthoracic spinal cord contusion injury, we observed a significant shift in the T_2 relaxation properties of the rat hindlimb muscles. The largest increase in T_2 was noted in the soleus muscle (+17.9%), which resulted in significant T_2 contrast in the hindlimb muscles as early as 1 week post-SCI. Both training paradigms, treadmill and cycling training, accelerated the recovery in the T_2 relaxation properties following SCI resulting in normal soleus T_2 values in the training groups at 4 weeks post-SCI, versus 12 weeks post-SCI in the non-trained animals. Finally, in vitro histological assessments of rat skeletal muscles demonstrated that there was no apparent muscle injury in any of the muscles (Figure).

Conclusions

This study demonstrates that rats following SCI show a significant shift in the T_2 relaxation properties of the rat hindlimb muscles and early intervention strategies can effectively accelerate muscle T_2 recovery.

Acknowledgements

This work was supported by grants Christopher Reeve Paralysis Foundation (CRPF) # BA2-0202-2 and RO1HD37645, RO1HD40850 from the NIH. MR data were obtained at the Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) facility in the Evelyn F. and William L. McKnight Brain Institute of the University of Florida.