METAMAGNETISM AND FERMI SURFACE CHANGE IN CeIrIn5: A HIGH FIELD TRANSPORT AND DHVA STUDY

C.Capan (LANL); L.Balicas (NHMFL); T.Murphy (NHMFL); E.Palm (NHMFL); E.D.Bauer (LANL); R.Movshovich (LANL); M.F.Hundley (LANL); J.D.Thompson (LANL); J.L.Sarrao (LANL)

Metamagnetism refers to a magnetic field induced transformation from a state of low polarization to a state of high polarization in an itinerant paramagnet. While a complete microscopic description of this phenomenon is still missing, metamagnetic systems have attracted renewed attention in the context of quantum phase transitions. Experimental investigations in Sr$_2$RuO$_7$ suggested the possibility of a quantum critical point associated with metamagnetism[1]. CeIrIn$_5$, a recently discovered heavy fermion superconductor, offers yet another playground for such investigations[2]. A metamagnetic-like transition has been reported for fields exceeding 30T applied along the c-axis in this tetragonal material, based on a characteristic increase observed in magnetization[3] and an associated jump in specific heat[4]. Our preliminary investigations up to 17T have revealed a field induced Non Fermi Liquid behavior in both specific heat and resistivity for field parallel to c-axis and a strong anisotropy with respect to field orientation. We have tentatively attributed this behavior to a quantum critical point associated with the suppression of metamagnetism[5]. Here, we report our recent results of high field magnetization and resistivity up to 33T.

We have measured resistivity and cantilever magnetization in single crystals of CeIrIn$_5$ using a dilution refrigerator in the 33T magnet at NHMFL. We observe a metamagnetic anomaly at $H_M=28T$ in both quantities at the lowest temperatures. The thermodynamic signature is a kink followed by an increase in magnetization as the field is increased, corresponding to a second order transition, as shown on Fig.1. The transition gradually shifts to higher fields as the temperature is increased. There is a corresponding sharp drop in resistivity at low temperatures, as the field is increased above H_M, as shown on Fig.2. The maximum in resistivity decreases with increasing temperature and the magnetoresistance become positive above 0.7K with only a kink corresponding to the metamagnetic transition. The possibility of a quasiparticle mass enhancement related to the presence of a quantum critical point at H_M is being investigated. The dHvA oscillations resolved in magnetization represent a complementary source of information to the magnetotransport data. The preliminary analysis of the dHvA data gives evidence for a Fermi surface rearrangement at the metamagnetic transition. A more detailed analysis is underway.

![Fig1: Magnetization vs. Field in CeIrIn5](image1.png)

![Fig2: Resistivity vs. Field in CeIrIn5](image2.png)

Work at Los Alamos was performed under the auspices of the U.S. Department of Energy. Work at NHMFL was performed under the auspices of National Science Foundation, State of Florida and U.S. Department of Energy.

References