EFFICIENT COAXIAL TRAPS FOR NMR PROBES

P.L. Gor’kov, E.Y. Chekmenev, K.K. Shetty, S. Saha, W.W. Brey (NHMFL)

Introduction

High-frequency 15N/1H NMR probes for static, solid state samples have been developed at the NHMFL for applications in protein structure determination [1]. The double-frequency matching networks are based on a well-known approach [2] for nuclei with widely separated gyromagnetic ratios. Our implementation is shown in Figure 1. A natural figure of merit for a matching network is the ratio of the applied power dissipated in the sample coil to the total applied power, or simply the “power efficiency.” For both resonances, the power efficiency of the matching network is largely a function of loss in the coaxial 15N trap: a $\lambda/4$ stub that "looks like" a short at the 15N resonance but an open circuit for 1H. To get the best efficiency from the matching network, it is necessary to maximize the trap resistance R_t at the 1H resonance and minimize it at the 15N resonance. At the 1H resonance, it can be shown that $R_t = 2\alpha lZ_0$, where α is the attenuation coefficient, l is the length, and Z_0 is the characteristic impedance of the stub. However, at low frequency, $R_t = \alpha l/Z_0$. It’s clear that these two quantities can not be minimized simultaneously. It should be possible to trade off efficiency in one channel to improve efficiency in the other as needed by varying the construction of the stub.

Experimental

We tested four different 15N transmission line traps of outer diameter of 8.4 mm. The first was commercial UT-390, which has a PTFE dielectric and a center conductor of diameter 2.6 mm. Three variations with same outer diameter but with an center conductor of diameter 4.8 mm were constructed and tested for comparison. Using the same sample coil for all probes, the efficiency was characterized by measuring the 90° pulse times for standard samples.

Results and Discussion

Figure 2 indicates that, as Z_0 decreases from 49 Ω, the 15N efficiency increases but the 1H efficiency drops. This indicates that changing the trap design allows one to trade B_1 field in the 1H channel against sensitivity in the 15N channel depending upon the requirements of the experiment and sample.

References