MAGNETIC FIELD-TUNED QUANTUM CRITICAL POINT IN CeAuSb$_2$

L. Balicas (NHMFL); S. Nakatsuji (U. Kyoto, Physics); H. Lee (UC Davis, Physics); P. Schlottmann (FSU, Physics); T. P. Murphy (NHMFL); Z. Fisk (UC Davis, Physics)

Introduction

When the long-range order in a system is suppressed to zero temperature by tuning an external variable, such as pressure, chemical composition or magnetic field H, the system is said to exhibit a quantum critical point (QCP) [1]. The magnetic field is an ideal control parameter, since it can be reversibly and continuously tuned towards the QCP. Two compounds with field-tuned QCP, YbRh$_2$Si$_2$ and Sr$_3$Ru$_2$O$_7$, reached prominence due to the non-Fermi liquid (NFL) behavior triggered by the quantum fluctuations associated with the QCP. In this letter we present a Ce-compound, CeAuSb$_2$, exhibiting a field-tuned QCP and unusual transport and thermodynamic properties. All three systems have a field-tuned QCP as a common thread, yet their behavior in high fields and low T are considerably different.

Experimental

Here we report on the anomalous metallic properties of CeAuSb$_2$ having used a combination of cryogenic and high field facilities provided by the NHMFL.

Results and Discussion

$H = 0$, CeAuSb$_2$ displays AF ordering at $T_N = 6.0$ K. Above T_N, the resistivity ρ displays a T^α dependence with $\alpha < 1$ and C_e/T has the $-\ln T$ dependence characteristic of NFL behavior. For $T < T_N$, ρ has the $A T^2$ FL-like dependence and the extrapolation of C_e/T to $T = 0$ yields a Sommerfeld coefficient of $\gamma \sim 0.1$ J/mol.K2, so that CeAuSb$_2$ is to be considered a heavy-Fermion system. A magnetic field along the inter-plane direction leads to two subsequent metamagnetic transitions and the concomitant continuous suppression of T_N to $T = 0$ at $H_C = 5.3 \pm 0.2$ T. As the AF phase boundary is approached from the paramagnetic (PM) phase, γ is enhanced and the A coefficient of the resistivity diverges as $H - H_C$ [1]. As T is lowered for $H \sim H_C$, the T-dependence of ρ and C_e/T is sub-linear and $-\ln T$, respectively. These observations suggest the existence of a field-induced QCP at H_C. At higher fields an unconventional T^3-dependence emerges and becomes more prominent as H increases, suggesting that the FL state is not recovered for $H >> H_C$.

Conclusions

The field-tuned QCP systems represent a challenge from the theoretical perspective, since the different compounds have some common aspects, but do not seem to belong to the same universality class.

Acknowledgements

This work is sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE grant DE-FG03-03NA00066.

References