IMPROVED H_{c2} IN BULK-FORM MAGNESIUM DIBORIDE BY MECHANICAL ALLOYING WITH CARBON

Introduction

Recent studies of magnesium diboride thin films by Braccini et al.\(^1\) found $H_{c2}(0K)|| > 50T$ for C-doped MgB\(_2\) films. Such critical field properties exceed those of any Nb-base conductor at any temperature, suggesting that MgB\(_2\) could be a viable replacement for Nb\(_3\)Sn as a high field magnet conductor. Untextured carbon-doped filaments fabricated by a CVD method can achieve upper critical fields in excess of 30T at 4.2K\(^2\).

The present document discusses the ex-situ synthesis of alloyed MgB\(_2\) powder using high energy ball milling of MgB\(_2\) with C. Since a major goal of MgB\(_2\) technology is the fabrication of high critical current density, multifilament wire suitable for magnet applications, we need a scalable bulk process capable of producing carbon-doped precursor powder. One such method is provided by this work.

Experimental

MgB\(_2\) powder was mixed with powdered graphite in several proportions and high energy ball milled for tens of hours, then made into pellets. Pellets were hot isostatic pressed (HIP) at 1000°C and >30ksi for 200 minutes, then exposed to Mg vapor at 900°C for 5 hours. Properties were then measured by various techniques. High field electrical properties were measured at NHMFL – Los Alamos using the 65T pulsed magnet.

Results and Discussion

Figure 1 shows measured H_{c2} for our samples, plotted alongside data from the literature, where x is the carbon content given by Mg(B\(_{1-x}\)C\(_x\))^2. Our analyses showed that while our X=0.0525 sample had near total carbon incorporation into the lattice, our nominally X=0.17 sample had a lattice composition of only about X=0.69. While the X=0.0525 sample had $J_c>10^6 \text{ A/cm}^2$ as well as excellent H_{c2}, the nominal X=0.17 sample had J_c reduced by nearly two orders of magnitude. Normal state resistivity was also much higher for the more heavily doped sample.

Conclusions

We have shown that milling C with MgB\(_2\) can produce $H_{c2}(0K)$ equal to that obtained for single crystals and CVD filaments. Lattice disorder introduced in the milling process is indicated by weakened XRD patterns, high normal state resistivity, and a low-temperature upturn in $H_{c2}(T)$. Excess carbon not incorporated into the crystal lattice can result in detrimental effects such as grain boundary obstruction (causing reduced J_c), reduced T_c, and reduced H_{c2}.

Acknowledgements

BJS was supported by the Fusion Energy Sciences Fellowship Program, administered by Oak Ridge Institute for Science and Education under a contract between the U.S. Department of Energy and the Oak Ridge Associated Universities. This research was also supported by the NSF under the University of Wisconsin- Madison MRSEC program. The authors thank the excellent staff of the NHMFL-Los Alamos as well as W. Starch, A. Squitieri, J. Mantei, and R. Mungall in Wisconsin.

References