Evidence that the upper critical field of Nb3Sn is independent of whether it is cubic or tetragonal

Jian Zhou, Youn Jung Jo, Zu Hawn Sung, Haidong Zhou, Peter J. Lee et al.

Citation: Appl. Phys. Lett. 99, 122507 (2011); doi: 10.1063/1.3643055
View online: http://dx.doi.org/10.1063/1.3643055
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v99/i12
Published by the American Institute of Physics.

Related Articles
Nb3Sn nucleation and growth in multifilament superconducting strands monitored by high resolution synchrotron diffraction during in situ reaction
Eilenberger and Ginzburg-Landau models of the vortex core in high -superconductors
J. Appl. Phys. 110, 033911 (2011)
Upper critical field and thermally activated flux flow in LaFeAsO1xFx
J. Appl. Phys. 109, 07E162 (2011)
Self-similar magnetic structures during the vortex-glass to vortex-liquid transition of type II superconductors
Low Temp. Phys. 37, 287 (2011)
Mathematical model of vortex penetration phenomenon
J. Appl. Phys. 109, 013913 (2011)

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors
Evidence that the upper critical field of Nb$_3$Sn is independent of whether it is cubic or tetragonal

Jian Zhou, Youn Jung Jo, Zu Hawn Sung, Haidong Zhou, Peter J. Lee, and David C. Larbalestier
National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA

Received 23 February 2011; accepted 4 August 2011; published online 21 September 2011

Although 2011 marks the 50th anniversary of Nb$_3$Sn as the first high field superconductor, real understanding of its upper critical field behavior H_{c2} is incomplete. Here, we show surprising H_{c2} data on highly homogeneous bulk samples that exhibit identical upper critical field $H_{c2}(0.3 \, \text{K}) \approx 29 \pm 0.2 \, \text{T}$ with or without undergoing the cubic-to-tetragonal transition, a result in strong contrast to widely used multiple-source data compilations that show a strong depression of $H_{c2}(0 \, \text{K})$ from 29 T to 21.4 T in the tetragonal state. © 2011 American Institute of Physics. [doi:10.1063/1.3643055]

Nb$_3$Sn is the most widely used superconductor for generating fields above $\sim 10 \, \text{T}$. More than 600 tons of Nb$_3$Sn will be used in the International Tokomak Experimental Reactor (ITER). This extensive and long-standing use makes it all the more surprising that there is not an agreed data set for the variation of the upper critical field H_{c2} with composition across the A15 phase field of Nb$_3$Sn. High Sn compositions are important for the very high critical current densities J_c now achieved in commercial strands. Optimizing $J_c(H)$ would be much easier with a quantitative understanding of how H_{c2} varies with Sn content since all practical Nb$_3$Sn wires contain the full range of A15 phase compositions (generally thought to range from $\sim 18\text{-}25$ at. %Sn (Ref. 3)). The integrated effect of shells of varying %Sn, T_c and H_{c2} has been addressed both experimentally4 and by modeling.5 These studies show that flattening the Sn gradient raises the effective H_{c2} and J_c. The modeling scheme of Cooley et al.5 is particularly valuable, but it lacks the composition dependence of H_{c2}. To fill this need, we have fabricated homogeneous binary Nb$_3$Sn bulk samples in one, consistent fashion to synthesize A15 compositions in one, consistent fashion to

Average measurement of the reversible magnetization yields $H_{c2}(0)$ just as high and reaches the same $29.1 \, \text{T}$ value found in any optimally Ti- or Ta-doped wire.3,6

Rather homogeneous bulk Nb$_3$Sn was made by Devanay et al.7 by heating samples into the melt phase and by Goldacker et al.8 using a hot isostatic press (HIP) at 1100 °C. To further reduce inhomogeneity, we used a HIP capable of reaching up to 2200 °C. We report here on nominally stoichiometric 25 at. %Sn and nominally Sn-rich 27 at. %Sn samples so as to ensure the most Sn-rich A15 compositions. About 45 g samples were synthesized by combining Nb (~ 325 mesh, 99.8%, Alfa Aesar) and Sn (~ 325 mesh, 99.8%, Alfa Aesar) powders in a high energy ball mill. Mixing and powder packing were performed in a dedicated glove box filled with Ar gas to minimize oxidation. After 60 min of milling, the powders were pressed into a hard pellet and then sealed in vacuum in a Ta-lined steel tube, which was pressurized at 2 kbar in a HIP for a pre-anneal for 16 h at 650 °C and then at the main A15 phase reaction at 1200 °C for 72 or 160 h. The central reacted A15 part of each can was then cut out and re-sealed in an evacuated Ta-lined Nb tube for a 2nd HIP reaction at 1400 °C, 1600 °C or 1800 °C for 24 h. One piece of the 27 at. %Sn sample annealed at 1800 °C was further annealed in an evacuated Ta-lined Nb tube for 30 days at 1200 °C.

X-ray diffraction (XRD) using a liquid helium cryostat was used to identify the tetragonal transformation. Specific heat measurements were performed in a 16 T physical property measurement systems (PPMS). $H_{c2}(T)$ was mostly determined by small-current resistivity measurements in fields up to 32 T down to 0.3 K but was benchmarked in several cases by measurements of H_{c2} derived from the reversible magnetization in a 14 T vibrating sample magnetometer. Due to their high uniformity, the samples showed very little magnetization hysteresis and had a linear M(H) characteristic and sharp slope change at H_{c2}. A15 compositions were determined using pure-element-standardized energy dispersive X-ray spectroscopy (EDS) in a field emission scanning electron microscope (SEM).

Fig. 1 shows the resistive and specific heat superconducting transitions and the calculated T_c distributions9 for both nominal compositions in their various conditions. Table I summarizes the T_c, the EDS-measured Sn at. % of the A15 grains, the residual resistance ratio (RRR) $[\rho(300 \, \text{K})/\rho(20 \, \text{K})]$, $\rho(20 \, \text{K})$ and the resistively measured H_{c2} at 0.3 K. Raising the annealing temperature to 1800 °C reduces the A15 Sn content by about 1 at. % in each case. However, the T_c drops only slightly on raising the annealing temperature from 1400 °C to 1800 °C. All our data indicate that Sn is rejected from the A15 lattice above 1400 °C, which is consistent with the Nb$_3$Sn phase boundary bending to Sn-poor compositions.3,10 High sample homogeneity is attested by sharp resistivity transitions (except for the 27Sn$_{1400}$ sample caused by grain boundary precipitation of NbSn$_2$) and especially by the narrow specific heat T_c distributions in Fig. 1. Moreover, high homogeneity is also evidenced by the fact that the volumetric averaging measurement of the reversible magnetization yields sharp magnetization slope transitions at $H_{c2}(T)$ which overlap

aPresent address: Kyungpook National University, Daegu 702-701, South Korea.

bAuthor to whom correspondence should be addressed. Electronic mail: larbalestier@asc.magnet.fsu.edu.
very closely with the potentially percolative, “best bit” resistivity measurements (Fig. 2). We thus have good confidence that the $H_{c2}(T)$ values from our high-field resistivity measurements represent the entire sample (with the exception of the 27Sn_{1400} sample shown in Fig. 1).

The cubic-to-tetragonal transformation of the A15 phase has been reported to occur from 31 K to 45 K,11 for example at 45 K (Ref. 7) and at 35 K,8 when Sn is $>24.5\%$. Fig. 3 shows the $\{400\}$ XRD peaks obtained at room temperature and at 10 K for both compositions in various conditions. The split of the 2θ peak at 71.4° at room temperature into two peaks at 10 K is a clear evidence of the cubic-to-tetragonal transformation. The c-axis contraction distinguishes the (004) plane reflection from the $\{400\}$ family and moves it to a higher angle. While the higher Sn A15 grains (25Sn_{1400} (24.6%), 25Sn_{1600} (24.5%), 27Sn_{1400} (24.6%), and 27Sn_{1200} 30 days (24.9%)) display the tetragonal structure in Fig. 3, the Sn-poor samples (25Sn_{1800} (23.3%) and 27Sn_{1800} (23.7%)) remain cubic down to 10 K, consistent with earlier reports that the transformation occurs only for Sn higher than 24.5%Sn.7,8,12

Fig. 4(a) compares $H_{c2}(T)$ of both tetragonal and cubic samples. They have identical $H_{c2}(T)$ behavior with $H_{c2}(0.3 K) = 29.1 \pm 0.2$ T. This result strongly contrasts with the widely reported depression of $H_{c2}(T)$ for tetragonal Nb$_3$Sn,12–15 as is shown in the comparisons of Figs. 4(b) and 4(c). The previous study and reviews have directly tied the H_{c2} suppression to the onset of the tetragonal transformation.12–15 However, our samples of known high homogeneity show that the cubic-tetragonal transformation does not shift the H_{c2}.

Also of note is that the $H_{c2}(T)$ of our bulk Nb$_3$Sn is significantly higher than most previous reports,12–14 with the exception of Foner’s13 cubic single crystals.

There remains the issue of the normal state resistivity and RRR dependence of H_{c2}. Orlando et al.16 noticed a crossover on going from a “clean” film with $\rho = 8.8 \mu\Omega\cdot\text{cm}$ (RRR > 9.5) to a rather “dirty” sample with $\rho = 36 \mu\Omega\cdot\text{cm}$, $H_{c2}(0)$ rising from $~26.5$ to 29 T. Table I similarly divides our samples into a “cleaner” group with resistivities around $\rho = 10 \mu\Omega\cdot\text{cm}$ and RRR > 8, and a “dirtier” group with $\rho > 20 \mu\Omega\cdot\text{cm}$ and RRR < 5.5. Fig. 5(a) shows that the “cleaner” samples have a lower $H_{c2}(0.3 K)$ ~ 27.6 T, while Fig. 5(b) shows that H_{c2} and A15 phase Sn% are much less well correlated, since samples with Sn contents of 23.3 and 24.6 at. %Sn both have $H_{c2}(0.3 K) > 29T$. As a conclusion, the dominant control variable for H_{c2} is not Sn composition,

![FIG. 1. (Color online) T_c plots from the resistivity and specific heat measurements for nominal 25 at. % (a) and 27 at. %Sn samples (b). The T_c distribution is obtained by deconvolution of the specific heat data in the region of the superconducting transition.](image1)

![FIG. 2. (Color online) High sample homogeneity is evidenced by overlap of the percolative H_{c2} deduced from the 90% point on the resistivity curves and the volumetric average H_{c2} deduced from reversible magnetization measurements up to 14 T in a VSM.](image2)

![FIG. 3. (Color online) Samples with and without tetragonal transformation shown by their low temperature XRD traces for the nominal 25%Sn (a) and 27%Sn (b) sample sets. Note that the transformation does not occur for samples annealed at 1800 °C when the A15 Sn content falls below 24 at. %. The instrument resolution is about 0.005°, well below the changes seen.](image3)

TABLE I. Summary of physical properties of the samples.

<table>
<thead>
<tr>
<th>Sample name (T)</th>
<th>T_c (K)</th>
<th>Sn (at. %)</th>
<th>RRR</th>
<th>ρ ((\mu\Omega\cdot\text{cm}))</th>
<th>$H_{c2}(0.3 K)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25Sn_{1400}</td>
<td>18.05</td>
<td>24.6 ± 0.3</td>
<td>5.44</td>
<td>20.9</td>
<td>29.1</td>
</tr>
<tr>
<td>25Sn_{1600}</td>
<td>17.90</td>
<td>24.5 ± 0.4</td>
<td>8.37</td>
<td>12.7</td>
<td>27.6</td>
</tr>
<tr>
<td>25Sn_{1800}</td>
<td>17.87</td>
<td>23.3 ± 0.7</td>
<td>3.69</td>
<td>31.3</td>
<td>29.4</td>
</tr>
<tr>
<td>27Sn_{1400}</td>
<td>18.05</td>
<td>24.6 ± 0.2</td>
<td>1.97</td>
<td>42.5</td>
<td>29.1</td>
</tr>
<tr>
<td>27Sn_{1800}</td>
<td>17.67</td>
<td>23.7 ± 0.4</td>
<td>2.23</td>
<td>50.5</td>
<td>29.0</td>
</tr>
<tr>
<td>27Sn_{1200} 30 days</td>
<td>17.81</td>
<td>24.9 ± 0.2</td>
<td>9.48</td>
<td>10.9</td>
<td>27.6</td>
</tr>
</tbody>
</table>
or structure but the carrier scattering quantified by RRR and the ρ. Moreover, the fact that the “dirtier” 25Sn$_{1400}$ and 27Sn$_{1400}$ become tetragonal at low temperature indicates that the structural transformation can happen in materials with significant scattering.

In summary, these results overturn the broadly accepted view that H_{c2} is suppressed in the tetragonal state and speculations that this may explain some of the strong reversible strain sensitivity of the superconducting properties of Nb$_3$Sn. This previously unchallenged conclusion may have been influenced by the use of standard Werthamer, Helfand, and Hohenberg (WHH) fitting to data taken on a wide variety of samples fabricated in different ways in diverse material forms (thin films, single crystals, and polycrystals). In contrast, we have varied the A15Sn% while maintaining the same sample quality, form and fabrication method. Multiple measurement types (electrical, chemical, and crystallographic) have directly addressed the sample homogeneity issue, leading us to conclude that all except one (the Cooley et al. sample) are indeed very homogeneous.

Finally we note that Cooley et al. have shown that ball milling followed by low temperature reactions (\sim650°C) can strongly increase the $H_{c2}(T)$ slope at T_c. Based on standard Werthamer, Helfand, and Hohenberg (WHH) fitting to H_{c2} of data up to 9 T, they deduced that $H_{c2}(0)$ could reach 35 T. However, to make our ball-milled samples homogeneous, we had to take our samples to temperatures well above 1200°C where this valuable milling disorder anneals away. In search of the maximum critical field, we may note the surprising result of the present binary samples that $H_{c2}(0) = 29$ T is as high as any optimized Ta- or Ti-doped wire, suggesting that wires do not yet have the optimum H_{c2} possible in the system.

This work was supported by the U.S. Department of Energy under Awards No. DE-FG02-06ER54881 and DE-FG02-07ER41451. High magnetic field measurements were supported by NSF/DMR-0084173 and by the State of Florida. Youn Jung Jo is supported by the National Research Foundation of Korea (Contracts NRF 2010-6377 and 2010-20057). A. Polyanskii, W. Starch, V. Griffin, E. Choi, M. Brown, and J. Collins provided valuable assistance.