High Field Superconducting Solenoids Via High Temperature Superconductors

Justin Schwartz, Fellow, IEEE, Timothy Effio, Xiaotao Liu, Quang V. Le, Abdallah L. Mbaruku, Hans J. Schneider-Muntau, Tengming Shen, Honghai Song, Ulf P. Trociewitz, Xiaorong Wang, Student Member, IEEE, and Hubertus W. Weijers

Abstract—High-field superconducting solenoids have proven themselves to be of great value to scientific research in a number of fields, including chemistry, physics and biology. Present-day magnets take advantage of the high-field properties of Nb-Sn, but the high-field limits of this conductor are nearly reached and so a new conductor and magnet technology is necessary for superconducting magnets beyond 25 T. Twenty years after the initial discovery of superconductivity at high temperatures in complex oxides, a number of high temperature superconductor (HTS) based conductors are available in sufficient lengths to develop high-field superconducting magnets. In this paper, present day HTS conductor and magnet technologies are discussed. HTS conductors have demonstrated the ability to carry very large critical current densities at magnetic fields of 45 T, and two insert coil demonstrations have surpassed the 25 T barrier. There are, however, many challenges to the implementation of HTS conductors in high-field magnets, including coil manufacturing, electromechanical behavior and quench protection. These issues are discussed and a view to the future is provided.

Index Terms—High-temperature superconductors, nuclear magnetic resonance, superconducting magnets, superconducting materials, superconducting tapes, superconducting wires.

I. INTRODUCTION

HIGH field superconducting magnets play an important role in scientific research. Nineteen Nobel Prizes, including sixteen in physics and three in chemistry, have been awarded for scientific discoveries related to either the use or generation of high magnetic fields. Seven of these have been awarded in the past twenty years. Much of the importance of high magnetic fields relates to the fundamental behavior of charged particles and their orbits around magnetic field lines; as the magnetic field increases, the radius of the particle orbit decreases, thereby allowing investigations of phenomena on smaller length scales. Specific examples of the impact of high magnetic fields on research are found in condensed matter physics, materials science, biology, chemistry, physiology and psychology [1]–[5]. Furthermore, superconducting magnets have been an essential enabling technology for particle accelerators and colliders and play an essential role in fusion devices, including the International Thermonuclear Experimental Reactor [6], [7].

The development of high-field superconducting magnets is driven primarily by the development of high-field superconducting materials [8]. Early superconducting solenoids were limited by the properties of NbTi. More recently, progress in Nb3Sn conductors have driven the maximum magnetic field obtainable above 20 T. Recent examples of high-field Nb3Sn solenoids include the ultra wide-bore 900 MHz (21.1 T) Nuclear Magnetic Resonance (NMR) magnet at the National High Magnetic Field Laboratory (NHMFL) and the 950 MHz (22.3 T) NMR magnet from Bruker. These systems demonstrate that high-field solenoids follow the development of high-field conductors quickly. Nb3Sn conductors, and the magnets in which they result, are approaching their limit in high-field performance as dictated by the upper critical field \((H_{c2}) \), so it is important to assess the future of high-field superconducting conductors and magnets.

In this paper, the importance of and potential for superconducting solenoids generating magnetic fields above 25 T with high temperature superconductors (HTS) are discussed. The first part of the paper provides a few specific examples of the impact of high magnetic fields on science. The preponderance of the paper then focuses on the technological opportunities of HTS conductors and the challenges that must be overcome if higher magnetic fields are to be generated. Particular emphasis is placed on the progress and issues of HTS conductors, including Bi-Sr-Ca-Cu-O wires and tapes, Y-Ba-Cu-O coated conductors and MgB2 wires. A necessary-but-not-sufficient condition for the implementation of a new conductor is high engineering critical current density \((J_E) \), so the high-field electrical performance of HTS conductors are discussed with an emphasis on low temperature behavior in engineering forms. The potential for significant improvements in \(J_E(B) \) is discussed and the essential relationships between conductor processing technologies, manufacturing scale-up issues, and magnet manufacturing are assessed.

High \(J_E(B) \) HTS conductors pose engineering challenges for high performance, high-field, superconducting magnets. Very slow quench dynamics has important implications for quench detection and protection. The conductor failure modes due to quenching are not understood and the quench limits are not well defined. There are also relationships between conductor electromechanics, the fundamental limits on \(J_E \) and conductor homogeneity which may also impact high-field magnet development. Furthermore, there is evidence that quench-induced conductor degradation and electromechanics may be directly coupled such that the mechanical state of the
conductor influences the quench limits, and that a protected quench may reduce the conductor strain tolerance. These issues and their underlying science are discussed. Thus, this paper addresses the essential question: can a new, high-field, integrated conductor & magnet technology evolve?

II. MOTIVATIONS FOR HIGH-FIELD SOLENOIDS

Recent advances in high magnetic field science have been propelled by the development of a series of new solenoid magnets at the NHMFL. These include the 60 T controlled pulse resistive magnet (1998), 45 T DC hybrid magnet (1999), 35 T DC resistive magnet (2003), 900 MHz NMR magnet (2004), 14.5 T ion cyclotron resonance magnet (2004) and the 90 T multi-shot pulsed magnet (2006) [9]-[13].

One example of the benefits of high magnetic fields is in the study of quadrupolar nuclei. In this case, there is a reduction in second order broadening with increasing field and an improvement in sensitivity that scales $\sim B^4$. So, for example, in a study of the 17O shift in methyl alpha-D-glucopyranoside (a sugar) [14], NMR studies at 830 MHz (19.6 T) show a nineteen-fold increase in sensitivity and an 84-fold increase in speed as compared to data obtained at 400 MHz (9.4 T). The signal is larger and the line width narrower. Furthermore, the small signals in the 830 MHz spectrum are spinning sidebands from the magic angle spinning, which are not resolvable at 400 MHz. Another example is found in the studies of $\mathrm{Al}_2\mathrm{O}_3 + \mathrm{B}_2\mathrm{O}_3$ [15]. In this case, not only does the resolution significantly improve with magnetic field, but only at 25 T does it become possible to resolve the four different states of Al in the molecule. Another example from solid state NMR comes from the determination of member protein structures [16]. Consider the amino acid sequences of two membrane proteins, one of which is very short (KdpF) and one which is lengthy (Rv1861). Both are from mycobacterium tuberculosis and are potential drug targets. While the structure of the small protein can be solved, the spectra of the larger protein are too overlapped and higher fields are required to resolve the signals that provide the structural restraints; at 30 T, spectra of the larger proteins would be nearly completely resolved.

These examples represent only a few of many that can be found in chemistry, biology, physics, materials science, engineering and psychology. More detailed examples are discussed at length in the report by the Committee on Opportunities in High Magnetic Field Science (COHMAG), a Commissioned National Research Council Study [17]. COHMAG investigated the science and engineering that may be enabled by the production of higher magnetic fields and set targets for future magnet technology. Amongst the magnets targeted is a 30 T, superconducting, high resolution NMR spectrometer. This technological goal is based in part on the demonstration of a 25.05 T insert coil using Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ (Bi2212) conductor, successfully tested in 2003 [18]. This was the first time a magnetic field greater than 25 T was generated by a superconducting material. More recently, another insert coil tested at the NHMFL generated 26.8 T using YBa$_2$Cu$_3$O$_{7-\gamma}$ (YBCO) conductor [19]. Although this insert is significantly smaller in ID, OD and height, the average current density in the coil is at least double that of any previous record-setting high-field HTS insert coil. While COHMAG defines the motivation for higher field magnets, these test coils illustrate the potential of emerging HTS conductor technologies.

III. HIGH-FIELD SUPERconductING MATERIALS

The first metric that determines the applicability of a superconducting material is the transport critical current density as a function of magnetic field, $J_c(B)$. To compare magnet conductor options, the engineering critical current density, $J_E(B)$, is typically used because it factors in not only the performance of the superconductor itself, but the quantity of non-superconducting materials present. Thus, $J_E(B) = I_c(B)/A_{\text{cond}}$, where $I_c(B)$ is the transport critical current as a function of background magnetic field and A_{cond} is the overall cross-section of the conductor. The conductor fill factor f is defined as the fraction of the conductor area occupied by superconductor, $f = A_{\text{SC}}/A_{\text{cond}}$.

Fig. 1 plots typical $J_E(B, 4.2 \text{~K})$ data for NbTi, Nb$_3$Sn, MgB$_2$ and Bi2212 wires [20]. It is important to note that this data is a “snapshot in time”; the conductors, and in particular MgB$_2$ and Bi2212, continue to improve. It is clearly seen that NbTi and Nb$_3$Sn are severely limited above 12 T and 24 T, respectively. The poor high-field performance of MgB$_2$ wires is surprising. While MgB$_2$ has shown significant high-field behavior in thin films via proper doping [21], this has not been replicated in bulk or wire forms and thus MgB$_2$ cannot be considered a high-field conductor at present. If the thin-film results can be translated to wires, however, then the potential for MgB$_2$ as a low cost, high-field conductor is significant.

A. High-Field Performance of HTS Conductors

While Fig. 1 plots the transport behavior of low temperature superconductors in comparison with Bi2212, Fig. 2 plots $J_E(B)$ to 45 T for Bi2212 conductors circa 2003–2004 and YBCO coated conductors circa 2005. This previously unpublished data is the only existing data at 45 T, however, and remains valuable as such. Data for two types of Bi2212 conductors are shown, round wires (RW, 0.8 mm diameter) and the wide (4 mm), thin
is at least four times as 500 versus 19) and electromagnetic is very high, the (4 is not likely to be driven by improvements in is also very high. of the tape. This is not likely to be an in-

Fig. 2. \(J_E(B, 4.2 \text{K}) \) of Bi2212 wires and tapes and YBCO coated conductors in a background magnetic field up to 45 T. Although these conductors are now 2–4 years old and have been surpassed in performance by more recent versions, this is the only data available at such high fields and shows the weak dependence of \(J_E \) on \(B \) to fields well beyond those envisioned in superconducting magnets in the next decade. Note that the electric field criterion is 5 \(\mu \)V/cm. This is not applicable to the design of magnets, but is a limitation of the electrically noisy environment of the 45 T Hybrid magnet.

Fig. 3. \(J_E(B, 4.2 \text{K}) \) of circa 2007 Bi2212, Bi2223 and YBCO conductors in a magnetic field up to 25 T. In comparison with the data shown in Fig. 2 the quality of HTS conductors has improved significantly.

(0.2 mm) tapes used in the 25.05 T insert coil. Somewhat surprisingly, the Bi2212 round wire performs as well as the “good direction” \(B||ab \) of the tape. This is not likely to be an intrinsic effect but rather due to filament-size effects, where the RW has a much higher filament count (>500 versus 19) and much smaller filaments than the tape conductor. There is a factor of four difference in the two orientations for the Bi2212 tape and a factor of three difference for the two orientations for the YBCO, illustrating the intrinsic electromagnetic anisotropy in these conductors.

More recent transport measurement results to 25 T on circa 2007 conductors are shown in Fig. 3, with cross-sectional images of the conductors shown in Figs. 4 and 5 [22]–[24]. In this case, the y-axis range is a factor of five greater than in Fig. 2. In Fig. 3, only data for the \(B||c \) (“bad-direction”) for YBCO is shown; the critical current for \(B||ab \) is at least four times as high. Thus, YBCO \(J_E(B) \) performance has increased by about a factor of five relative to the data in Fig. 2 and now surpasses that of Bi2212. These improvements illustrate the significant improvement in understanding YBCO developed from intense study during the past ten years. One of the most important issues to be resolved is that of the thickness dependence, in which the \(J_c \) of the YBCO layer decreased significantly as the layer thickness increased. This is now understood as a combination of two factors, the through-thickness varying porosity (density) which is modeled effectively via Effective Medium Theory, and flux pinning [25]–[27]. As a result, \(J_c \) (77 K, s.f.) ~4–5 MA/cm² is now obtained in thick YBCO layers. Future improvements in self-field \(J_E \) are not likely to be driven by improvements in \(J_c \), but rather in thicker YBCO layers and thinner packaging. As the ability to tailor flux-pinning defects continues to improve, the ability to design the conductor for the magnetic field required by the application is likely to evolve. Furthermore, because recent breakthroughs in magnetic flux pinning engineering affect both the magnetic field dependence of \(J_c \) and electromagnetic anisotropy, the field dependence of the YBCO data in Fig. 2 is not likely to result in a universal curve for YBCO and present and future YBCO conductors are likely to behave somewhat differently. More details on YBCO conductor manufacturing can be found elsewhere [28].

Fig. 3 also shows improvement in the Bi2212 RW relative to Fig. 2; since the collection of the data in Fig. 3, Bi2212 RW has improved even further [29]–[31]. While improvements in Bi2212 wires are less dramatic than in YBCO, Bi2212 has never received the level of R&D that YBCO has received, and
as a result a thorough understanding of Bi2212 has not yet developed. Significant improvements are anticipated in the near future as the research focus intensifies. For example, the post heat-treatment cross-sections of the highest \(J_E\) conductors show microstructures that are dominated by interfilament bridging [30]–[32]. This is seen in Fig. 6, which shows optical micrographs before and after heat treatment. The heat treated wire has extensive interfilament bridging and very high \(J_E\) (\(\sim 2\) kA/mm\(^2\) at 4.2 K, s.f.). Images of this type, which have been characteristic of Bi2212 from many manufacturers for over a decade, raise fundamental questions regarding where the current flows in Bi2212 multifilamentary conductors. Other significant unanswered questions include: what are the microscopic current limiting mechanisms in Bi2212 conductors? Why is round wire capable of high, isotropic \(J_E\)? As these questions are answered and Bi2212 is better understood, significant improvements in \(J_E\) are expected.

B. Implications for High-Field Superconducting Magnets

The data in Figs. 1–3, as well as similar progress by other HTS conductor manufacturers [32]–[34], illustrate three particularly important points. Firstly, the performance of HTS conductors continues to improve and further improvements are anticipated. Secondly, while Bi2212 and YBCO are demonstrated in insert coils to fields at or just above 25 T, conductor \(J_E(B)\) is sufficient for magnets to at least 45 T. Thus, if the short-sample \(J_E(B)\) performance is replicated in coils, electrical transport is not likely to be the performance-limiting factor. This is notably different from NbTi and Nb\(_3\)Sn magnets. Lastly, from the \(J_E(B)\) perspective, YBCO appears to be the best high-field conductor. Bi2212 remains of great interest, however, because it is the only round wire option beyond NbTi, and thus does not have to address issues related to anisotropic behavior that can strongly influence solenoid design [35], [36]. Furthermore, for high energy physics applications, round wires offer attractive options for cabling [37]. Lastly, one notices in Fig. 3 that Bi2223 has properties that are comparable to Bi2212. Bi2223, however, is not considered further because it is unlikely to have a low temperature, high-field niche. If tape conductor is acceptable, then Bi2223 is not competitive with YBCO. Thus, YBCO and Bi2212 remain the primary options for high-field magnets.

IV. ENGINEERING ISSUES FOR HIGH-FIELD HTS MAGNETS

There remain significant engineering issues that must be addressed before high-field HTS magnets become commonplace. The first is conductor availability in long lengths and sufficient quantities. This is not an intrinsic engineering problem but rather a question of commercial scale-up requiring sufficient market pull. HTS development has been dictated by conductor push, but the investment required for scale-up requires a market for the final product. The push for high-field solenoids [17] and the quest for a high energy collider beyond the Large Hadron Collider (LHC) may provide the necessary pull in the near term. It is important to note that it was the market pull of the Tevatron, followed by the MRI industry and the LHC, that provided the market pull for NbTi. The conductor development programs of the high energy physics community, and more recently the LARP program, have helped provide market pull for Nb\(_3\)Sn [38].

A. Conductor Processing and Magnet Manufacturing

As increasing quantities of HTS conductors become available, it is important to evaluate magnet manufacturing options. Traditionally there are two approaches: React-&-Wind (R&W) and Wind-&-React (W&R). R&W has the advantage of separating the conductor processing from the magnet manufacturing. Thus, materials to be incorporated into the magnet are not exposed to the conductor heat treatment. With R&W, however, the conductor experiences significant bending strain due to winding into the magnet form. For small-bore, high-field magnets, the bending strain can be significant and strain management is an important and often performance-limiting issue [39], [40]. Thus, R&W is limited to magnets that are not strain limited. NbTi magnets, while not technically R&W because there is not a "re-action" step, are wound into magnets after conductor manufacture is complete and the bending strains associated with winding are accommodated in the design similar to R&W systems. Alternatively, with W&R manufacturing the magnet is formed in its final geometry, including the incorporation of turn-to-turn insulation and co-wound reinforcement, before final heat treatment. The bending strain is released during heat treatment because the superconducting phase is formed after packaging and in its final geometry. This approach is typically used for Nb\(_3\)Sn magnets because of its strain sensitivity. For Nb\(_3\)Sn, insulation and reinforcement must be compatible with a heat treatment at \(\sim 700^\circ\)C in an inert atmosphere.

Decisions regarding coil manufacturing are strongly influenced by conductor processing requirements. YBCO conductors are manufactured via thin film processing technologies that are incompatible with W&R manufacturing. Thus, all YBCO magnets will be R&W and magnet design must account for bending strain. The electromechanical behavior of YBCO is discussed later.

Bi2212 processing is significantly more complicated than YBCO and Nb\(_3\)Sn and Bi2212 coil manufacturing remains a significant challenge [29], [41]–[43]. Bi2212 conductors are manufactured via a conventional powder-in-tube approach with Ag and Ag-alloy tubes. The approach is conceptually similar to multifilamentary NbTi and Nb\(_3\)Sn, with wire drawing and restacking to produce the multifilamentary cross-sections seen in Fig. 4. Like Nb\(_3\)Sn, Bi2212 requires a high temperature heat treatment after final deformation to produce high \(J_E(B)\). Unlike Nb\(_3\)Sn, however, the Bi2212 heat treatment must be performed in oxygen (typically 100%) and the peak temperature \((T_{\text{max}})\) must be controlled within a few \(^\circ\)C. A typical heat treatment schedule is shown in Fig. 7 where \(T_{\text{max}} \sim 890^\circ\)C.
Control of T_{max} is vital because it must be above the peritectic melting point of Bi2212 such that significant liquid phase is formed from which the high J_c Bi2212 grows during resolidification. If T_{max} is too low, insufficient melting occurs and performance is poor. If T_{max} is too high, a number of problems can result in reduced J_E, including phase separation and increased leakage of the Bi2212 through the sheath. Typical $I_c(T_{\text{max}})$ is seen in Fig. 8, showing that I_c increases by 275% as T_{max} increases from 886°C to 887°C, but decreases by ~20% from 888°C to 890°C.

Successful Bi2212 insert coils have been manufactured using both R&W and W&R manufacturing [35], [44]–[47]. Due to the complexity of the Bi2212 heat treatment, from a manufacturing perspective R&W is preferred. As discussed later, however, Bi2212 conductors are strain sensitive and the bending strain associated with R&W is unacceptably limiting for high-field magnets. W&R manufacturing has proven to be a significant challenge for Bi2212 magnets, and as the size of coils has increased, coil performance relative to short-sample conductor performance has decreased. This is likely to be related to inhomogeneous temperature and/or oxygen distributions during heat treatment. If the temperature is inhomogeneous, then either parts of the coil do not reach T_{max} or other parts may either be overheated or held at T_{max} for too long. Recent coil studies indicate that reducing T_{max} and increasing the time at T_{max}, t_m, may offer improvement. If the oxygen distribution in the coil is inhomogeneous during heat treatment, inhomogeneous melting may result because the melt temperature decreases as p_2 decreases [48], so oxygen-deficient sections of the coil may over-melt, or undesirable phase assemblages in regions of the magnet with insufficient oxygen during resolidification may result. Thus, obtaining a heat treatment that is uniform in temperature and p_2, such that the innermost sections of the coil are properly heat treated without over-processing the outermost regions, remains a significant challenge. Furthermore, because oxygen is required for Bi2212 processing, the options for insulation, coil former and reinforcement are limited. At best, current insulation options are undesirably thick, reducing the overall coil current density. At worst, the insulation enhances conductor leakage and interacts with the oxides that escape the wire [49]. This problem has plagued W&R Bi2212 conductors and coils for over fifteen years. Illustrations of leakage are shown in Fig. 9: (a) illustrates the path of molten oxide through the Ag sheath to the conductor edge and (b) shows a small W&R coil with a number of leakage spots randomly arrayed on the coil surface. A recent change from macor to inconel may significantly reduce leakage, however, and the complex chemistry of Ag, molten Bi2212, insulation and the coil former in oxygen is an important topic of Bi2212 R&D. Fig. 10 shows $I_c(B)$ results for two coils like that shown in Fig. 9, illustrating that progress in minimizing coil leakage is being made but that the effects of leakage are significant [50].

An alternative approach to Bi2212 coil manufacturing has been proposed that attempts to avoid the pitfalls of both R&W and W&R manufacturing. This approach, known as
“React-Wind-Sinter” (RWS) and illustrated in Fig. 11, splits the heat treatment into two separate steps [30], [31], [51], [52]. The “react” step is performed on a large heat treatment mandrel as if R&W were being used. Thus, the key partial-melt step is performed with the conductor not in a tightly wound geometry and oxygen and temperature uniformity are less challenging. The conductor is then cooled to room temperature, the coil wound into final form (like W&R), and the heat treatment completed primarily within the Bi2212 solid state. Fig. 12 shows $I_c(B)$ data for Bi2212 round wires heat treated with the process shown in Fig. 11 and the conventional process shown in Fig. 7 with identical T_{max}. The RWS heat treatment results in a 30% increase in performance. Results like those in Fig. 12 and other studies [30], [31], [51], [52] show that RWS may not only avoid many of the problems with R&W and W&R Bi2212 manufacturing but also significantly improve Bi2212 performance. These results illustrate that Bi2212 processing and magnet manufacturing remain far from optimized.

B. Electromechanical Behavior

High-field magnets intrinsically have large Lorentz forces (F_L) because $F_L \sim JB$, where J is the overall current density, B is the magnetic field generated and R is a typical scale-length for the magnet size. Since typically $B \sim J$ (and in general, high J is desired for reduced cost), F_L scales with B^2. Thus, stress and strain management are important issues in the design of high-field conductors and magnets [39], [40]. It is also important to note that although high-field solenoids have very large forces, the simplicity of the geometry relative to other magnet applications (e.g. dipole magnets) simplifies the mechanics. Thus, while solenoid design is primarily concerned with mitigating the effects of hoop tension, other magnet geometries also must be concerned with bending modes and compression. All superconducting magnets must consider differences in thermal expansion between the superconductor and other materials present in the magnet. Furthermore, as discussed previously, the conductor electromechanical behavior influences magnet manufacturing decisions.

In the case of YBCO, magnets will be constructed using R&W manufacturing, so magnet design must consider the bending strain associated with winding, thermal strain and Lorentz forces. The conductor architecture, with a very thin YBCO layer sandwiched by thick metallic layers, implies that the bending strain in the YBCO layer may be relatively small, but within the metallic layers it can be significant. One could conceivably design an asymmetric conductor such that the YBCO layer has significant pre-compression from winding, though this may overly strain the stabilizer or impact other design issues, such as quench protection. A number of reports show that, to first order, the electromechanical behavior of YBCO coated conductors are dominated by the Ni-alloy substrates (Ni-W and Hastelloy) [53]–[58]. As a result, conductor strength and strain tolerance can be a conductor design variable, although considerations that determine conductor J_E are likely to dominate the substrate selection. In general, YBCO coated conductors, and in particular those with Hastelloy substrates, are strong and sufficiently strain tolerant for high-field magnet applications. For example, the 26.8 T insert coil was not strain or stress limited. Fig. 13 shows the stress-strain and I_c-strain behavior of a typical YBCO coated conductor; similar data for other architectural variants are found in the literature. Interestingly, data from the most recent conductors has shown a reversible effect not seen in Fig. 13 nor in earlier work of most authors [57], [58]. This difference is attributed to improvements in the microstructure of the YBCO layer that eliminated the multiplicity of current paths that likely existed in earlier conductors. For magnets other than solenoids the dominant mechanical limits may be bending, compression, or tension normal to the conductor face, and issues related to interfacial shear and debonding may become important considerations. In these situations, the specifics of the conductor architectures and their manufacturing are likely to play more significant roles.

For Bi2212 conductors the electromechanical behavior is more complicated and is influenced by the behavior of the...
30% of the conductor maintains a (the unstrained batch-average strain) than the curve converges, indicating that the reliability, the relatively high reliabilities found in strained conductors are significant. For example, consider the data for ε = 0.349%, which is the roughly the critical strain (ε_c). The reliability at I = 378 A (the unstrained batch-average I_c) is ~0.30, indicating that ~30% of the conductor maintains I_c = 378 A at this strain. If one considers I ~ 190 A (50% of the original batch average), the reliability is over 80%. Furthermore, it is interesting to consider the trends in the ε = 0.25% curve. For reliabilities above 0.50, the curve deviates only slightly from the zero-strain data, indicating that there is no effect on transport; i.e., all of the Bi2212 that carries current is insensitive to this level of strain. At high current (reliability ~0.10), the ε = 0.25% and ε = 0.349% curves converge, indicating that there is portion of current-carrying Bi2212 that is particularly strain-tolerant. These are clear indicators that there is significant potential to improve the electromechanical behavior of Bi2212 through improved Bi2212 microstructure. Thus, as J_E increases through improved understanding of Bi2212, improved electromechanical performance is also anticipated. Not surprisingly, recent data indicates that the highest performing Bi2212 round wires also have significantly higher ε_c (~0.6%) than the Bi2212 tapes described in the Weibull study. It will be interesting to see if the improved ε_c corresponds to more homogeneous behavior as defined by statistical analysis.

C. Quench Protection

Like the Lorentz force, the stored energy in a magnet scales with B^2 and the size of the magnet. Thus, high-field solenoids are high energy and high energy density systems and effective quench protection is essential for safe operation, particularly when system cost on the order of $10 M is anticipated. In general, quench protection in HTS magnets is qualitatively similar to that in low temperature superconductor (LTS) magnets, requiring detection of a disturbance or normal zone, a determination if the disturbance is unstable, and the triggering of the protection systems to prevent damage to the magnet. The basic physics and general mathematical formulations that describe quench phenomena in HTS magnets are the same as that for...
LTS magnets, but because of significant differences in the material properties, quench protection in HTS systems may prove to be quite different and more challenging than in LTS systems.

The quench behavior of Bi2212 and YBCO short samples and small coils has been reported [64]–[81]. While the results vary with the specifics of the experimental approach and conductor architecture, a few general themes are consistently found. Firstly, HTS conductors have large energy margin and high heat loads may be tolerable. This is likely to be more important for high energy physics and/or fusion magnet applications. Secondly, normal zone propagation is very slow; typically two orders of magnitude slower than Nb3Sn. Lastly, HTS conductors can be damaged by quenching and the failure limits, which in turn dictate the requirements of the protection system, are not yet quantified in detail. The failure limits are likely to be dependent on the conductor architecture and thus significant differences between Bi2212 and YBCO may be seen. In fact, there may be significant differences between YBCO manufacturers because of differences in the ways the conductors are packaged.

A number of studies have investigated quenching in YBCO conductors and coils [65]–[71], [74], [75], [79]–[81]. The number of potentially important variables is significant and makes comparisons of results difficult. One experimental variable is the mechanism by which quenching is induced. In one approach, quenches are initiated by taking advantage of inhomogeneities in the conductor I_c. The transport current is fixed such that it is below the end-to-end I_c but above that of local “weak-spots”. Joule heating causes weak-spots to become hot-spots. An alternative approach involves pulsing an external heater that is mounted to the conductor. In this way, the conductor transport current is a freely selected variable, but the total energy into the conductor is more difficult to determine because some of the energy is dissipated in the material (epoxy) that attaches the heater to the conductor and in the surrounding atmosphere. The latter approach has been used to study architectural variations in YBCO coated conductors, the performance of Bi2212 tapes and wires, and small coils of each material. Typically, these experiments result in data like that seen in Figs. 16 and 17, which show the voltage and temperature versus time at different locations within a conductor [72]. This data is used to determine if the conductor or coil quenched or recovered, and in the case of a quench, the normal zone propagation velocity. The long timescales on the x-axes of these figures are indicative of the slow quench dynamics in HTS materials.

Fig. 18 shows self-field normal zone propagation results for three YBCO coated conductor architectures like those shown in Fig. 5. In this experiment, the conductors are identical except for variations in the outer metal layers. Here, “Cu-Cu” refers to a conductor with Cu on each side, “Cu-SS” refers to a conductor with Cu on one side and stainless steel on the other, and “SS-SS” refers to a conductor with stainless steel on both sides. It is interesting to note that there is little difference between the “Cu-Cu” and the “Cu-SS”, indicating that once a certain Cu thickness is present, additional Cu does not affect propagation. There is a significant increase in the propagation velocity in the absence of Cu (“SS-SS” conductor). Thus, if quench propagation is a limiting condition for protection, there may be advantages to reducing the amount of Cu present in favor of a SS or another stabilizer. More generally, conductor optimization may now include a range of options for stabilizer that consider both the requirements for quench protection and mechanical strength.
Recent coil measurements that under certain circumstances quench propagation may be faster than previously measured and that there may be two “stages” to such propagation, including an initial stage with slow propagation, followed by a second stage with much faster propagation. This remains unconfirmed, however, and further study is required.

It is also important to consider the temperature and atmosphere dependencies of the propagation velocity. The data shown in Fig. 18 are at 50 K and 60 K in vacuum, and the velocity increases as temperature decreases. Recent measurements at 4.2 K in liquid helium show roughly a factor of two increase in velocity relative to the 50 K results. Thus, for example, at \(I \sim 0.3I_c \) in a SS-SS conductor, the propagation velocity reaches \(\sim 90 \text{ mm/s} \). This is the fastest propagation reported in any HTS conductor, but remains significantly slower than \(\text{Nb}_3\text{Sn} \) and \(\text{NbTi} \) conductors. Based solely on temperature effects, one would expect a larger increase; the effectiveness of helium cooling at the surface, as compared to the experiments in vacuum, slows the propagation.

It is also pertinent to consider the quench propagation behavior in a coil as opposed to short samples to determine if short sample measurements are relevant to coil design. Fig. 19 compares the propagation results for the Cu-Cu conductor shown in Fig. 18 with results from a similar self-field experiment on a pancake coil made of the same conductor. The propagation in the coil is slower than the single conductor. One may have expected the opposite due to the effects of self-field, but instead the greater thermal mass of the coil dominates the behavior. It is also interesting to note that transverse propagation in the coil is \(\sim 20 \times \) slower than longitudinal propagation. Large differences between longitudinal and transverse propagation velocity are also reported in [80].

There is recent data on the quench behavior of Bi2212 tapes and round wires in liquid helium using an otherwise similar experimental approach as the YBCO results [76]–[78]. In this case, propagation velocities \(\sim 20–30 \text{ mm/s} \) are found in tapes and \(\sim 60–80 \text{ mm/s} \) in round wires. The difference is believed to be primarily related to the \(J_E \) differences in the two conductors; as \(J_E \) increases, so does the propagation velocity.

In any superconducting magnet, the protection system is designed to prevent superconductor degradation due to a quench, and experiments on YBCO and Bi2212 conductors and coils have that degradation is possible. A typical example for YBCO is shown in Fig. 20 [82]. Here, the upper curve shows the hot-spot temperature during the quench and the lower two curves show \(I_c \) before (upper) and after (lower) the quench. From this and other similar experiments, it appears that the safe operational limit during the quench of a YBCO coil can be either a hot-spot temperature limit, a peak temperature gradient limit, or a \(dT/dt \) limit (thermal shock). It is also important to note that subsequent electromechanical measurements on a section of this conductor that experienced no reduction in \(I_c \), due to the quench [the section within the oval on Fig. 20] did show a significant reduction in \(\varepsilon_c \) [82]. This indicates that the quench protection limits may not be derived solely from reduced electrical performance, but that instead a new metric that accounts for this behavior will be required. This requires further study.

A systematic study of quench degradation in Bi2212 tapes and wires indicates that degradation in these conductors correlates with conductor performance. Fig. 21 plots \(I_c \) versus \(\text{Run #} \) for Bi2212 tapes, where a “run” is defined as a heater pulse that may or may not induce a quench. If the heat pulse does not induce a quench, then the pulse amplitude is increased in the next
run. This process is repeated until a quench is obtained. This figure illustrates that no degradation occurs for heat pulses that do not result in a quench, but that every time a quench does result, the conductor performance is degraded. This was seen consistently for Bi2212 tapes. Fig. 22 shows results from a similar experiment on a Bi2212 round wire. In this case, it was found that the conductor could experience a quench and not necessarily experience degradation, as was the case with YBCO. By varying the length of the heater and the duration and amplitude of the heat pulses, the relative effects of the hot-spot temperature (T_{peak}), temperature gradient (dT/dx) and rate of temperature change (dT/dt) on the quench degradation were assessed and preliminary operational limits to prevent degradation were determined. These are summarized in Table I. While these values are considered preliminary, they illustrate that the Bi2212 round wires are more tolerant than the tape conductors. This is consistent with the higher ε_c measured in Bi2212 round wires than in Bi2212 tape conductors.

V. SUMMARY AND CONCLUSION

The development of high-field superconducting solenoids is being driven by the demands of scientific research. As Nb$_3$Sn reaches its fundamental high-field limits, new conductor and magnet technologies are required. Emerging HTS conductors are poised to fill this need and their progress indicates the potential for generating magnetic fields significantly higher than previously envisioned. Large J_c(45 T) has been measured and insert coils above 25 T have been demonstrated.

At present it remains unclear which HTS conductor will emerge as the preferred option for high-field magnets. Just as high-field LTS magnets typically take advantage of both NbTi and Nb$_3$Sn, one can envision high-field HTS magnets with both YBCO and Bi2212 sections. YBCO has higher J_c, J_E and mechanical strength, and is well understood. YBCO also has design flexibility in the selection of stabilizer, indicating that it may be possible to optimize the conductor mechanical and thermal behaviors for strength and quench protection, and in nanostructures for optimization of the electrical behavior for specific magnets. YBCO is limited, however, to wide tape geometries and at present has a fill factor $\sim 1\%$.

The implementation of Bi2212 poses many challenges due to high temperature heat treatment in oxygen and relatively poor strain tolerance. Bi2212 is available, however, as an isotropic round wire which may offer significant benefits and a 30–40% fill factor. Furthermore, there is no intrinsic reason that J_c in YBCO should be significantly higher than in Bi2212. Thus, significant improvements in Bi2212 may be forthcoming as the research focus on this material increases. In comparing Bi2212 round wires and tapes, it is seen that the round wires have higher J_c, higher J_E, increased strain tolerance and improve quench tolerance. Although these are only a correlation at present, it is likely that these improvements are all the result of reduced filament size and improved microstructural characteristics. Thus, it is anticipated that as Bi2212 becomes better understood at the microstructural level, that all of these performance metrics will improve further.

In both YBCO and Bi2212 magnets, slow quench propagation velocity and high energy margin imply that HTS coils will be very stable and that quenching may be unlikely. The situation may be more complicated, however, in that the slow propagation does not necessarily imply that there is not a large hot-spot temperature, and a coil could be damaged without a traditional quench. It is interesting to note that the maximum hot-spot temperatures shown in Table I are higher than those typically allowed for LTS magnets. Thus, while the slow propagation may indicate that more time is available for active protection, it also implies that detection will be the most significant challenge [80]. Detection depends upon obtaining a measurable and distinguishable voltage over a significant length of conductor. Without propagation, a sufficient voltage may not be detected before damage is initiated. Note that voltage is a length-averaged quantity (more precisely, it is the integral of the electrical field over a length) and that two vastly different electric field profiles can result in the same end-to-end voltage. Conductor degradation, however, is the result of local conditions. Due to slow propagation, $T(x)$ and $V(x)$ in HTS coils are much more peaked than in LTS coils, so quench detection using a similar voltage criterion may result in damage to an HTS coil where it would not in an LTS coil. As a result, new approaches to quench detection may be required.

As HTS conductors continue to progress and the remaining problems solved, significant impact of these conductors on high-field magnets is anticipated in the years to come.

ACKNOWLEDGMENT

The authors thank collaborators at American Superconductor Corporation, Oxford Superconducting Technology, Supercon, Inc. and SuperPower Inc. for use of conductors and for productive collaborations over the past ten years. The authors also thank David Larbalestier, Eric Hellstrom, Jianyi Jiang and W. Denis Markiewicz for many useful discussions.
REFERENCES

