Comparison of current limiting defects in YBa$_2$Cu$_3$O$_{7-x}$ and Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ films

D. Abraimov1, P. Li1, R. Feenstra2, X. Li3, M. Rupich3, F. Kametani1, S. Lee4, C. Eom4, J. Jiang1, J. Weiss1, E. Hellstrom1, D. C. Larbalestier4

1National High Magnetic Field Laboratory,
2Oak Ridge National Laboratory,
3American Superconductors Corporation,
4Department of Materials Science and Engineering, University of Wisconsin.

Introduction

- Current limiting defects in superconductors generate strong non-uniformities in local electric fields (E) due to the nonlinear $E(J)$ characteristics of the superconducting state.
- The Low Temperature Laser Scanning Microscope (LTLSM) can image $E(x,y)$ with about 2-3 um resolution over a wide range of E, T and H_{ext}.
- We report the effects of current limiting defects in YBa$_2$Cu$_3$O$_{7-x}$ and Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ films.

Visualization of transition from GB to IG behavior in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ on 5° bicrystal

Transition from GB limited to bulk limited regimes in MOD YBCO on RABITS

Texture characterization of BaF$_2$ YBCO film on older RABITS

Visualization of transition from GB to IG behavior in quasi-1D MOD YBa$_2$Cu$_3$O$_{7-x}$ link

Description of Samples

YBa$_2$Cu$_3$O$_{7-x}$

Coated conductors grown with s-beam BaF$_2$, ox, and SrTiO$_3$ substrates on RABITS

Critical angle

$\theta_c \approx 2.4 \degree$ for 2D GBs

$\theta_c \approx 1.2 \degree$ for 3D GBs

BaFe$_{1-x}$Co$_x$As$_2$ (x=0.08)

Granular films grown in situ on SrTiO$_3$ substrates by PLD processes to 300 nm thick

Critical angle

$\theta_c = 2.44 \pm 0.26$ nm wide, 700 nm long

GBs were used to define misorientation angles

δ-scan of the 211 reflections were used to define misorientation angles

GBs have mixed misorientation

In-plane and out-of-plane misorientations reported

δ-scan of the 112 reflections were used to define misorientation angles

δ-scan of the 211 reflections were used to define misorientation angles

δ-scan of the 112 reflections were used to define misorientation angles

Acknowledgement

Work at NHMFL was supported under Department of Energy Office of Electricity Delivery and Energy Reliability, NSF Cooperative Agreement No. DMII-0461473, by the State of Florida, and by AFOSR grant FA9550-06-1-0474. Work at UW was supported by DOE grant DE-FG02-06ER46292.

Summary

- We found that bias current dependencies and magnetic field dependence of $E(x,y)$ near GBs are qualitatively similar to that found in YBa$_2$Cu$_3$O$_{7-x}$ superconductors.
- Self field critical angle for BaFe$_{1-x}$Co$_x$As$_2$, GBs is similar to the in-plane misoriented MOD YBCO GBs.
- We found strong non-uniformity of the $E(x,y)$ response along BaFe$_{1-x}$Co$_x$As$_2$ GBs. To understand microscopic origins of these non-uniformities additional TEM and analysis is necessary.
- Meandering GBs of modern MOD film on RABITS have larger J_c than PLD on RABITS and BaFe$_2$ on older RABITS.
- For MOD on modern RABITS in-plane component reduces J_c more than out-of-plane component (between 1°-3°).