Current limiting defects in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and YBa$_2$Cu$_3$O$_{7-x}$ films.

D. Abraimov, Pei Li, J. Jiang, J. Weiss, E. Hellstrom, D. C. Larbalestier
The Applied Superconductivity Center, National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA

Ron Feenstra
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Xiaoping Li, M. Rupich
American Superconductors Corporation, Devens, MA 01434-4020 USA

S. Lee, Chang-Beom Eom
Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706, USA

Acknowledgement

Work at NHMFL was supported under by Department of Energy Office of Electricity Delivery and Energy Reliability; NSF Cooperative Agreement No. DMR-0084173, by the State of Florida, and by AFOSR grant FA9550-06-1-0474. Work at UW was supported by DOE grant DE-FG02-06ER463.
Current limiting defects in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ films

Description of Samples

Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ (x≈0.08)

Epitaxial, grown *in situ* on [001]-tilt SrTiO$_3$ bicrystal by PLD process

≈350 nm thick

Coherence length

\[\xi_{ab} = 2.44 \text{ nm} \]
\[\xi_c = 1.22 \text{ nm} \]

\[T_c \approx 18 \text{ K} \]

Samples for 4-point transport measurements
100 μm wide, 700 μm long links were patterned with laser ablation for 4-point transport measurements

Off-axis azimuthal θ-scans of the 112 reflections were used to define misorientation angles

In-plane misorientations: 3°, 5°, 9°, 24°
Do GBs in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ limit supercurrent?

Description of Samples

Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ ($x\approx 0.08$)

- Epitaxial, grown *in situ* on [001]-tilt SrTiO$_3$ bicrystal by PLD process
- ≈ 350 nm thick
- Coherence length:
 - $\xi_{ab} = 2.44$ nm
 - $\xi_c = 1.22$ nm
- $T_c \approx 18$ K
- Samples for 4-point transport measurements
 - 100 μm wide, 700 μm long
 - Links were patterned with laser ablation for 4-point transport measurements
- Off-axis azimuthal θ-scans of the 112 reflections were used to define misorientation angles
- In-plane misorientations: 3°, 5°, 9°, 24°

YBa$_2$Cu$_3$O$_{7-x}$

- Coated conductors grown with e-beam BaF$_2$ *ex situ* (≈ 350 nm thick), PLD (0.5 μm) and MOD (1μm) processes on RABiTS
- $T_c = 89.7 - 90.0$ K
- Coherence length:
 - $\xi_{ab} \approx 2$ nm
 - $\xi_c \approx 0.4$ nm
- 3.5 μm – 6.6 μm wide
- 230 μm – 320 μm long
- Links were patterned with focused ion beam, then finished with laser ablation
- OIM was used to define misorientation angles
- In-plane and out-of-plane misorientations separated
- GBs have mixed misorientation
- Numerous low angle GBs studied
A superconducting track with inhomogeneity (i.e. all CCs) is put into the flux flow state, placing different areas at different points on their local I-V curve.

• A fine-focus laser beam probes the sample surface while simultaneously the electrical or/and optical response is recorded. The voltage difference dV produced by the local heating of the laser beam is used to create a 2D image. It corresponds to the local 2D electric field E distribution.
LTLSM vs. MO responses on YBCO test sample

Surface image

LTLSM voltage response
- $T=83$ K, $f_{\text{las}}=102$ kHz
- $I=379.7$ mA
- $V=157$ μV

MO ZFC image
- $T=10.4$ K
- $H_{\text{ext}}=40$ mT

$\delta V(x, y) \propto E(x, y)$

FIB cuts
- A: 40% of width
- B: 30% of width

250 nm thick YBCO

PLD YBCO film grown by G. Daniels;
FIB cut by S. Liao
MOI by A. Polyanskii
Bias current dependence of dV response $\text{Ba(Fe}_{1-x} \text{Co}_x)\text{As}_2$

Voltage response maps

1. $0.27 \, \mu V$ to $-0.08 \, \mu V$
2. $0.44 \, \mu V$ to $-0.07 \, \mu V$
3. $0.52 \, \mu V$ to $-0.07 \, \mu V$

Critical current density of the bottom grain is smaller possibly due to strain.

9°GB
$T=12 \, \text{K}$
$B=3.5 \, \text{T}$

Red points are bias points for LTLSM visualization.

Red points are bias points for LTLSM visualization.

$100 \, \mu \text{m}$

Current, mA

$0 \, \mu V$ to $70 \, \mu V$
Bias current dependence of dV response Ba(Fe$_{1-x}$ Co$_x$)$_2$As$_2$

Even 3o GB is current limiting

$J_{c\ GB} / J_{c\ bulk} \geq 0.93$

3^o GB
$T=12$ K Self-field

Red points are bias points for LTLSM visualization.
Visualization of transition from GB to IG behavior in Ba(Fe$_{1-x}$ Co$_x$)$_2$As$_2$ on 5° bicrystal

Redistribution of electric field

Similar to YBCO: R_{ff} rising above the transition field

$T=16.5$ K

Small average voltage kept constant by reducing the bias current to get the same average electric field.

dV near GB is decreasing as B rising (similar to YBCO)

I_{bias}

-0.09 μV 0.28 μV $<V> \approx 2$ μV 100μm

B, Tesla

R_{ff}, mΩ

Bias current, mA

dV_{max}, μV

$rac{dV}{dB}$, μV

Bias current, mA
Non-uniformity of the GB at 12 K for 5° GB

Pattern repeats for all measured fields: 0.25 T-5 T
J_c of 3° and 5° GB match above 4T
J_c decays exponentially in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ GBs

$$J_{c,gb}(\theta_r) \propto \exp(-\theta_r / 3.36)$$

$\theta_{rc} = 3.36^\circ$

T=12 K
0.5 T

Critical angle θ_{rc} is similar to YBCO grown on [001] tilted bicrystals
Conclusions on Ba(Fe$_{1-x}$ Co$_x$)$_2$As$_2$

• For Ba(Fe$_{1-x}$ Co$_x$)$_2$As$_2$ bias current dependencies and magnetic field dependence of $E(x,y)$ near GBs are qualitatively similar to previously found in YBa$_2$Cu$_3$O$_{7-x}$ Coated Conductors;

• Even 3° GB is current limiting;

• Self field critical angle (3.4°) for Ba(Fe$_{1-x}$ Co$_x$)$_2$As$_2$ GBs is similar to in-plane misoriented MOD YBCO GBs;

• Found strong non-uniformity of the dV response along Ba(Fe$_{1-x}$ Co$_x$)$_2$As$_2$ GBs. To understand microscopic origins of these non-uniformities additional TEM analysis is necessary;
Which type of GB best carries current in YBCO?

Ex situ thick films have meandered GBs (MOD), in situ films have planar GBs (PLD)

Feldmann et al. (ASC): MOD meandered GBs are not exponential and can have higher J_c

Held et al.: [010] out-of-plane (OOP) GBs have higher J_c than [001] in-plane (IP) tilt – planar PLD GBs on STO

Our aim: understand the nature of real GBs on RABiTS and the best way forward to higher J_c with less current blocking
OIM + FIB + LTLSM make 1D GB arrays in well defined tracks

- **Samples with planar GBs:**
 1. Thin (0.34 μm) BaF₂ on older RABiTS \((\Delta \omega \sim 5^\circ, \Delta \phi \sim 6^\circ) \)
 2. 0.55 μm thick PLD (ASC) on more modern RABiTS, OOP<IP \((\Delta \omega \sim 2.5^\circ, \Delta \phi \sim 5^\circ) \)
 3. ~1 μm thick YBCO on modern RABiTS – \((\Delta \omega \sim 7.5^\circ, \Delta \phi \sim 6.5^\circ \) for Ni substrate);
- **Fully characterize sample with EBSD (orientation and GB maps)**
- **Cut 1D tracks with FIB**
 - Width: 3.4 μm - 6.2 μm;
 - Length up to ~370 μm
- **Low Temperature Laser Scanning Microscope (LTLSM)** images of the GB tracks in self field to 5T at variable bias to get \(I_c(H) \) of each GB
Ex situ BaF$_2$ on older AMSC RABiTS has similar a-axis and c-axis orientation maps
Ex situ BaF$_2$ on older ($\Delta\phi \sim 5$–7°, $\Delta\omega \sim 5^\circ$) AMSC RABiTS has continuous network of OOP and IP GBs

~ 10 GBs per track
MOD on modern AMSC RABiTS ($\Delta \phi \sim 5.5^\circ$, $\Delta \omega \sim 3.8^\circ$) has low-angle orientation c-axis map and numerous low-angle GBs on out-of-plane misorientation map.

Rotation angle map

Many highly-misaligned grains

Few highly-misaligned grains
MOD on modern AMSC RABiTS ($\Delta \phi \sim 5.5^\circ$, $\Delta \omega \sim 3.8^\circ$) has low-angle orientation c-axis map and numerous low-angle GBs on out-of-plane misorientation map.

Many OOP GBs with up to 5° misorientation within substrate grains.
Each track has a complete correlation of GBs by SEM, OIM, and LTLSM.
Visualization of transition from GB to IG behavior in quasi-1D MOD YBa$_2$Cu$_3$O$_{7-x}$ link

Local electric field becomes more homogeneous as magnetic field rises

Magnetic field

0.5 T 0.75 T 1 T 1.5 T 1.75 T 2 T 2.5 T 2.75 T 3 T 3.5 T 4 T 5 T

Bias current

19.12 mA 17.25 mA 15 mA 13.54 mA 12.39 mA 10.87 mA 9.05 mA 8.14 mA 7.24 mA 6.0 mA 4.76 mA 3.03 mA

$\langle V \rangle = \text{const}$

8.8 μV

-0.15 μV

50 μm
Varying the bias current reveals the I_c distribution

\[\Delta P \rightarrow \Delta T(x_l, y_l) \rightarrow \Delta j_c \rightarrow \Delta V(x_l, y_l) \]

$I_c(x)$ defined at onset of local E
for BaF$_2$
ex situ YBCO film on RABiTS

GB numbered

Bias current

SEM

Th-P dV

LT dV

-0.28 μV

7.68 μV

1 Tesla

R, μm

0 50 100 150 200 250 300

0 2 4 6 8

0.17 mA

0.54 mA

0.89 mA

1.07 mA

1.97 mA

4.32 mA

5.05 mA

5.96 mA

7.59 mA

8.49 mA

9.21 mA
Bias current dependencies of dV responses at 1 T for GBs

BaF$_2$ ex situ YBCO film on RABiTS
Critical angle versus rotation angle for BaF$_2$ ex situ YBCO film on RABiTS

Grain current

\[J_c(\Theta_r) = J_{c0} \exp \left(-\frac{\Theta_r - \Theta_{r0}}{\Theta_{rc}} \right) \]

\(\Theta_{r0} = 2.75^\circ \pm 0.01^\circ \)

\(\Theta_{rc} = 1.16^\circ \pm 0.03^\circ \)

The transition field \(B^* \) (at which grain \(J_c \) matches GB \(J_c \)) from linear fitting of dependence \(B(\Theta_{r0}) \) found:

\[B(\Theta_r)^* \approx \Theta_r -2.4, \text{ where } B \text{ is in Tesla, } (\Theta_r \geq 2.4^\circ) \]
J_c in meandered GBs does not decrease exponentially with GB rotation misorientation for MOD films

- No exponential dependence;
- J_c up to 3 MA/cm2 were measured

- J_c was detected for 14 GBs
- Other low-angle GBs have higher J_c therefore not measurable by LTLSM due to risk of burning links
- Two links were burned out
Separation of in-plane and out-of-plane components

No obvious difference between IP and OOP components for GB measured by LTLSM in self field.
Jc of individual MOD YBCO CC GBs at 0.5T

- More OOP components up to 5°, but they do not block super current;
- No GBs with OOP angle below 1 degree;
- Jc up to 1.2 MA/cm² were measured

\[
J_c \approx J_{co} \exp \left(-\frac{\Theta}{\Theta_c} - \frac{\Phi}{\Phi_c} \right)
\]

\(\Theta_c = 3.3°\) In-plane
\(\Phi_c = 19.65°\) Out-of-plane

![Graph showing Jc values with color scale and in-plane vs. out-of-plane angles](image)
J_c has no obvious dependence on whether IP or OOP misorientation dominates

ex situ BaF$_2$ YBCO films on vintage RABiTS
Comparison of J_c for different films at 2T, 79.2K

BaF$_2$ on older RABiTS

PLD on 1 yr old RABiTS

MOD on modern RABiTS

$\theta_c = 4.6^\circ$
$\Phi_c = 3.3^\circ$

$\theta_c = 3.06^\circ$
$\Phi_c = 2.99^\circ$

$\theta_c = 5.9^\circ$
$\Phi_c = 19.33^\circ$

Self-field: In-plane critical angle
$\theta_c = 3.3^\circ$
$\Phi_c = 19.65^\circ$

Out-of-plane critical angle
Conclusions – LTLSM study of YBCO GBs

• Used synergy of OIM, SEM (FIB) and LTLSM to measure J_c of individual GBs
• Our approach allows better statistics than other techniques
• For MOD CC we studied 62 naturally occurring GBs - they displayed dominant OOP misorientation
• For MOD CC IP component reduces J_c more than OOP component (between 1°-5°)
• IP and OOP misorientation components of BaF$_2$ on older RABiTS reduce J_c similarly
• Self field $J_c > 3$ MA/cm2 were measured for several GBs at 79.2K on MOD CC
• Meandering GBs of modern MOD film on RABiTS have larger J_c than PLD on RABiTS and BaF$_2$ on older RABiTS