Microchemical Redistribution in Internal Sn Composites for High Field Application

Peter J. Lee, Anatolii A. Polyanskii (Magneto Optical Imaging), Alexander A. Squitieri (T_c), David C. Larbalestier

Applied Superconductivity Center

Seung Hong, Jeffrey A. Parrell, Michael B. Field and Youzhu Zhang

Oxford Superconducting Technology
Outline

1. Distributed Nb-47Ti source Ti in Nb(Ta)

2. Ti Strips incorporated in barriers as test bed for shims of different materials.
Recap: Distributed 47Ti Ti sources in Nb

- OI-ST 7069 – Distributed Nb-47Ti
- Convoluted diffusion path
- No Cu-Ti particulates observed
- Intercurling of Nb-Ti, Cu and Nb

Nb-47Ti etched faster than other components
Ti distributes uniformly

Cu K 162 — 5450
Sn L 157 — 1693

Cu K 162 — 5450
Sn L 157 — 1693

5 µm

Nb L 179 — 11022

Ti K 86 — 470 net counts
Ti and Cu Hot Spots (Red)

Ti Hot Spots: Red 5 µm

Cu Hot Spots: Red 5 µm

Ti hot spot offset for Cu hot spot

50 hrs@665°C
High Ti Region After SI: BEI Image

- **Contamination Spot from 150 minute Spectral Image**
- **Darkest Phase:** Low Atomic Number.
- **Medium Dark Spots:** Similar Contrast to Nb barrier (bottom right). Larger than Low-Z phase.
- **Most Dark and Medium particles occur on side of Cu-rich island away from Sn source but some on isthmus between.**
- **High Cu Island Etch Differently than 2nd Phases in A15.**
- **Dark lines pass through holes so not indicative of two-phase.**
Summary

Within the resolution of SEM-EDS the Ti distribution appears to be uniform at ~1.5 Atomic %.

Ti-rich region on outer side and between Cu-rich islands. Although the local (1 µm SEM-EDS resolution) Ti content increases to up to ~10 At.% the concentration is presumably more localized to low-Z 2nd phase particles that are closer to 50 nm in diameter.

The Ti rich region has both low and medium atomic number particles. The sub-micron composition variation is beyond the resolution of the SEM – but is a good application of FIB

The Ti-rich particles form on the “outer” side of the 47-Ti sources – away from the Sn source.
Distributed Nb-47Ti in Nb(Ta)_3Sn

OI-ST High J_c type (Nb-7.5Ta)RRP ORe8056

50hrs@665°C
Reducing the low field J_c in RRP for HEP

- First attempt to make high J_c Nb-Ta-Ti likely over-doped (uncertain how much Ti would leave the Nb-47Ti rods)
- Heat treatment likely not optimized- Ti changes kinetics
- Suggests potential for maintaining 15 T J_c, reducing low field J_c
Overview EDS-Spectral Image FESEM

20 kV

Ti-K Net Counts
Analysis Area
Spectral Imaging

Lower (lighter) Ti towards filament centers?
Microstructural Note

Some columnar
-suggests insufficient Sn for best reaction
2. Barrier Strips

Strips in barrier of MJR sub-elements used as test bed for potential divider material

Example: 1-Ti alloy

Left: Example of true sub-divided sub-elements using Ta.

Sub-division of sub-elements is a technique for reducing D_{eff}.
OST Ti Strips in Barrier as testbed for divider technology

ORE244 0.025” Ti Strips ORE245 0.05” Ti Strips

<table>
<thead>
<tr>
<th>ID</th>
<th>Criteria</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>size</th>
<th>HT</th>
<th>NC% Jc</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>12 Jc fit</th>
<th>Bc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORE244</td>
<td>e-7</td>
<td>320.8</td>
<td>417.6</td>
<td>477.3</td>
<td>524.9</td>
<td>559.8</td>
<td>1</td>
<td>210/100+340/48+650/180</td>
<td>52</td>
<td>785</td>
<td>1023</td>
<td>1169</td>
<td>1285</td>
<td>1371</td>
<td>2016</td>
<td>24.2</td>
</tr>
<tr>
<td>ORe244</td>
<td>n</td>
<td>20</td>
<td>23</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>210/100+340/48+650/180</td>
<td>52</td>
<td>808</td>
<td>1046</td>
<td>1316</td>
<td>1654</td>
<td>2015</td>
<td>2032</td>
<td>24.4</td>
</tr>
<tr>
<td>ORe245</td>
<td>e-7</td>
<td>329.8</td>
<td>427.1</td>
<td>537.4</td>
<td>675.5</td>
<td>822.8</td>
<td>1</td>
<td>210/100+340/48+650/180</td>
<td>52</td>
<td>808</td>
<td>1046</td>
<td>1316</td>
<td>1654</td>
<td>2015</td>
<td>2032</td>
<td>24.4</td>
</tr>
<tr>
<td>ORE245</td>
<td>n</td>
<td>26</td>
<td>29</td>
<td>27</td>
<td>53</td>
<td>1</td>
<td>210/100+340/48+650/180</td>
<td>52</td>
<td>808</td>
<td>1046</td>
<td>1316</td>
<td>1654</td>
<td>2015</td>
<td>2032</td>
<td>24.4</td>
<td></td>
</tr>
</tbody>
</table>
MO: Effect of 0.025” strips strong enough to allow penetration to core in some cases

ORE 244 T=5.5 K ZFC

#76 H=100 mT

T=10K

#77 H=0 mT

1st penetration where strips coincides with thin-side of layer

Polyanskii
ORE 245 with thicker 0.05” Ti-shims

$H=120 \text{ mT}$ $ZFC \ T=10K$ $H=0 \text{ mT}$

Thicker Shims clearly changing penetration

Polyanskii
0.025” Ti Strip After HT: Overview BSE

Barrier fully or mostly reacted

FESEM
Spectral Imaging 0.025” shims: Ti stays mostly at shim location

Spectral imaging indicates Ti distributes from shim – higher Ti outside

High peak levels
0.025” Ti Spectral Image: Sn

Lower Sn outside shim
Outer Nb₃Sn layer broken – coincidence?

Cu Stabilizer

Ti leakage?

High Ti/Cu/Sn phases

Nb₃Sn fracture

Nb₃Sn fracture

Cu Stabilizer

Ti leakage?

High Ti/Cu/Sn phases

Nb₃Sn
0.05” shim: Cu and Sn rich regions in Ti shim region

- Sn lost to Ti shim region
- Measurement of Sn content of outer Nb₃Sn compromised by resolution of EDS (1-2 µm)
Mike Naus: Universal Plot of Goodness for both Internal Sn and PIT

Low T_c's from low-Sn A15 of MJR base. More Ti makes it worse.
Summary

- Distributed 47-Ti Ti sources produce a more uniform Ti distribution in pure Nb material than for Ta alloyed rod.
- There is a radial component to the Ti distribution across the layer.
- Ti strips could act as
 - a source for Ti
 - as well as divider by the production of non-superconducting high Cu and Sn Ti phases
 - but also reduces Sn availability and can locally over-dope in Ti.