Quantum Coherence in an Exchange-Coupled Dimer of Single-Molecule Magnets

S. Hill,1* R. S. Edwards,1 N. Aliaga-Alcalde,2 G. Christou2

A multi–high-frequency electron paramagnetic resonance method is used to probe the magnetic excitations of a dimer of single-molecule magnets. The measured spectra display well-resolved quantum transitions involving coherent superposition states of both molecules. The behavior may be understood in terms of an isotropic superexchange coupling between pairs of single-molecule magnets, in analogy with several recently proposed quantum devices based on artificially fabricated quantum dots or clusters. These findings highlight the potential utility of supramolecular chemistry in the design of future quantum devices based on molecular nanomagnets.

Considerable effort has focused on finding building blocks with which to construct the quantum logic gates (qubits) necessary for a quantum computer (1, 2). Most proposals utilizing electronic spin states take advantage of nanofabrication methods to create artificial molecules, or magnetic quantum dots (3,4). A Heisenberg-type exchange coupling between dots is achieved by allowing the electronic wave functions to leak from one dot to the next. This coupling is the essential ingredient in a quantum device because, unlike classical binary logic, it enables encoding of data via arbitrary superpositions of pure quantum states, e.g., |0⟩ and |1⟩ (2). These superposition states can store information far more efficiently than a classical binary memory. Furthermore, they permit massively parallel computations, i.e., many simultaneous quantum logic operations may be implemented on a single superposition state. For a quantum device to become a viable technology, it should be possible to perform a reasonably large number of quantum operations (~10⁶) on a single qubit without the superposition states losing coherence. Herein lies one of the main technical challenges, because most quantum systems are highly susceptible to decoherence through coupling to their environment (5).

We demonstrate that single-molecule magnets (SMMs) may be assembled to form coupled quantum systems of dimers (or chains, etc.), with many of the attributes of quantum dot–based schemes. Most importantly, our electron paramagnetic resonance (EPR) investigations of crystals (large, highly ordered three-dimensional arrays) containing exchange-coupled dimers of SMMs show that decoherence rates are considerably less than the characteristic quantum splittings (Δ/ℏ ~ GHz, where Δ is the energy splitting and ℏ is Planck’s constant) induced by the exchange couplings within the dimers, representing a step forward in the drive toward potential applications involving molecular magnets. Several proposals have suggested possible quantum computing schemes utilizing molecular magnets (6–8). The supramolecular (or “bottom-up”) approach to materials design is particularly attractive, because it affords control over many key parameters required for a viable qubit: Simple basis states may be realized through the choice of molecule; exchange couplings may then be selectively designed into crystalline arrays of these molecules; finally, one can isolate the qubits to some degree by attaching bulky organic groups to their periphery.

The subject of this investigation is the compound [Mn₄O₃Cl₄(O₂CEt)₃(py)₃]₂₂C₆H₁₄ (hereafter [Mn₄]₂; EtCO₂⁻ is propionate, py is pyridine, and C₆H₁₄ is hexane) (9), a member of a growing family of Mn₄ complexes that act as SMMs (10, 11), having a well-defined ground-state spin of S = 9/2. This compound crystallizes in a hexagonal space group (R3) with the Mn₄ molecules lying head-to-head on a crystallographic S₃ axis. The resulting [Mn₄]₂ supramolecular dimer is held together by six weak C–H–Cl hydrogen bonds (Fig. 1), leading to an appreciable antiferromagnetic superexchange coupling (J ~ 10 µeV) between the Mn₄ units within the dimer, which influences the low-temperature quantum properties of related [Mn₄]₁ dimers (12). Like all SMMs, [Mn₄]₂ displays superparamagnetic-like behavior at high temperatures, and magnetic hysteresis below a characteristic blocking temperature (~1 K). The hysteresis loops exhibit steps, which are due to magnetic quantum tunneling (MQT). However, unlike isolated SMMs, there is an absence of MQT at zero-field, due to a static exchange bias field that each molecule experiences because of its neighbor within the dimer (12). The effect of the bias is to shift the field positions of the main MQT steps by an amount of order −JhS²/µ (where µ is the magnetic moment of a Mn₄ monomer), so that the first step is observed on the hysteresis loop before reaching zero-field. However, the exchange bias itself does not quantum mechanically couple the SMMs within the dimer.

Before presenting experimental evidence for the coupled nature of the dimers, we develop a quantum mechanical model that takes this coupling into account. Neglecting off-diagonal crystal field terms and intermolecular interactions, the effective spin Hamiltonian (to fourth order) for a magnetic field (Bz) applied parallel to the easy (z) axis of a single isolated SMM has the form (11)

\[H = D S_z^2 + B_z O_z^2 + g_{\mu_B} B_z S_z, \]

where \(S_z \) is the z-axis spin projection operation.

Fig. 1. The [Mn₄O₃Cl₄(O₂CEt)₃(py)₃]₂ dimer; the Mn³⁺ and Mn⁴⁺ ions are labeled Mn and Mn⁺, respectively. The dashed lines represent the C–H–Cl hydrogen bonds holding the dimer together, and the dotted line is the close approach of the central bridging Cl atoms believed to be the main pathway for the exchange interaction between the two Mn₄ molecules.
the index \(i = 1, 2\) is used to label the two Mn_4 molecules in the dimer for the interacting case below; \(D(\theta < 0)\) is the uniaxial anisotropy constant; \(B_0^0\) characterizes the fourth-order axial anisotropy; and \(\mathbf{g}\) is the z-component of the Landé g-tensor. The omission of transverse terms in Eq. 1 does not affect the EPR spectra (they merely result in weak avoided level crossings, which cause the MQT).

For the case of two quantum mechanically coupled SMMs, the effective dimer Hamiltonian \(\hat{H}_D\) may be separated into the following diagonal and off-diagonal terms

\[\hat{H}_D = [\hat{H}_1 + \hat{H}_2 + J_\text{s} \hat{S}_{1z} \hat{S}_{2z} + \frac{1}{2} J_\text{c} (\hat{S}_{1z} \hat{S}_{2z} + \hat{S}_{1z} \hat{S}_{2z})] \]

where \(\hat{H}_1\) and \(\hat{H}_2\) are given by Eq. 1, the cross terms describe the exchange coupling between the two SMMs within the dimer, and the \(J\) values characterize the strength of this coupling. The diagonal zeroth-order Hamiltonian \(\hat{H}_0\) (in square brackets) includes the exchange bias \(J_\text{s} \hat{S}_{1z} \hat{S}_{2z}\), which has been considered previously \((12)\). The zeroth-order eigenvectors for the dimer may be written as products of the single-molecule eigenvectors \(|m_1, m_2\rangle\) (abbreviated \(|m_1, m_2\rangle\), where \(m_1\) and \(m_2\) represent the spin projections of the two molecules within the dimer. The zeroth-order eigenvalues are then easily obtained by solving Eq. 1 separately for molecules 1 and 2, and adding the exchange bias \(J_\text{s} m_1 m_2\) (Fig. 2).

In EPR, the only effect of the exchange bias is to cause shifts in the positions (energies) of single-spin transitions \((m_i \rightarrow m_i \pm 1)\), with the magnitude of the shift (bias) depending on the state \(m_i\) of the other molecule within the dimer. The off-diagonal interaction in Eq. 2 \((\hat{H}_D\) in curly brackets) couples the molecules, giving rise to the possibility of single-photon transitions between coupled states of the dimer. In principle, one could observe this coupling in hysteresis measurements, because magnetic relaxation mediated by tunneling into distinct superposition states occurs at slightly different magnetic field strengths, even when the tunneling occurs via states with the same total spin projection \((m_1 + m_2)\). However, the predicted splittings of MQT resonances turn out to be less than the inhomogeneous linewidths of the hysteresis steps \((12)\). Thus, clear evidence for the coupled nature of the dimer system has so far been lacking.

For illustrative purposes, we treat \(\hat{H}_D\) perturbatively. Because this interaction conserves angular momentum, the eigenvectors may be grouped into multiplets based on the sum of the projections \(M = m_1 + m_2\). The zeroth-order eigenvectors, which are listed in Fig. 2 (right), then act only between states within a given multiplet. The zeroth-order eigenvectors are grouped according to this scheme in Fig. 2 (left). In first order, \(\hat{H}_D\) acts between zeroth-order eigenvectors \(|m_1, m_2\rangle\) and \(|m_1 \pm 1, m_2\rangle\). The effect of this first-order interaction is most apparent in the \(M = -8\) multiplet, where it lifts the degeneracy between \(|-9/2\rangle, |-7/2\rangle\) and \(|-9/2\rangle, |-9/2\rangle\) states. The resultant eigenvectors correspond to symmetric (S) and antisymmetric (A) superpositions of the original product states. Indeed, \(\hat{H}_D\) causes considerable mixing of the zeroth-order eigenvectors within all multiplets, resulting in the first-order corrected eigenvectors, which are listed in Fig. 2 (right) for the lowest four multiplets; here, \(|m_1, m_2\rangle_S\) implies \(|m_1, m_2\rangle\) and \(|m_1, m_2\rangle_A\) implies \(|m_1, m_2\rangle - |m_1, m_2\rangle\).

In Fig. 2, we display a schematic of the energy-level shifts and splittings (not to scale) caused by the exchange bias, and by the full exchange, for the lowest lying levels at high magnetic fields \((M = -9 \rightarrow -6)\). The states are numbered for convenient discussion of the data. For clarity, higher lying states with \(M > -6\), including the zero-field \(|\pm 9/2\rangle, \mp (9/2)\rangle\) ground states, are not shown in Fig. 2. Application of a magnetic field parallel to the easy axis merely shifts all of the zeroth-order levels by an amount \(g_J\mu_B M\). Thus, \(\delta M = \pm 1\) EPR transition matrix elements may be accurately calculated using the eigenvectors in Fig. 2. The magnetic dipole perturbation only allows transitions between states having the same symmetry. The strongest of these transitions are shown in Fig. 2, labeled (a) through (g).

In the left panel of Fig. 3, we display temperature-dependent high-frequency EPR spectra obtained at 145 GHz, with the magnetic field applied parallel to the easy axis of a small \((<1\, \text{mm}^3)\) single-crystal sample; details of our high-frequency EPR setup are given elsewhere \((13)\). The inset shows a single 6 K spectrum \((f = 140\, \text{GHz})\) for a related monomeric Mn_4 complex without head-to-head interactions \((14)\). The monomer data are typical of most SMMs, showing a series of more-or-less evenly spaced resonances, and a smooth variation in intensity from one peak to the next. By contrast, the dimer spectra exhibit considerable complexity. Despite this complexity, the simulated dimer spectra (colored traces in the right panel of Fig. 3) show marked agreement with the raw data, both in the peak positions and relative intensities. The optimum parameters were deduced from a single fit to Eq. 2 of the main EPR peak positions obtained at many microwave frequencies. This fit, displayed in Fig. 4, yields the following values: \(D = -0.750(15)\, \text{K}, B_0^0 = -5(2) \times 10^{-5}\, \text{K}, g_J = 2,\) and \(J = 0.12(1)\, \text{K}\). These crystal field parameters are very similar to those obtained for the monomer \(D = -0.7\, \text{K}, B_0^0 = -9 \times 10^{-5}\, \text{K}\) \((14)\). We did not find it necessary to include anisotropy in the superexchange coupling for the dimer \((i.e., J_{\text{ss}} = J_{\text{yy}} = J)\), although long-range dipolar interactions improved the quality of the fit \((15, 16)\).

The simulated spectra (Fig. 3) are mainly limited to transitions among the levels displayed in Fig. 2 (a) through (g); we have also included the \(|7/2\rangle, -|9/2\rangle, -|1/2\rangle\) and \(-|9/2\rangle, -|1/2\rangle\) transitions, labeled (h) and (i), respectively. Resonance (s), meanwhile, corresponds to...
The inset illustrates the effect of the transverse part of the exchange (J_{xy}) for four values of $J_{xy} (T = 8 \; K)$. In both panels, resonances (a) through (g) correspond to the labeled transitions in Fig. 2; resonances (x), (h), and (i) are discussed in the main text. A Gaussian distribution in D [(σD $\sim 1\%$) was included in the simulations to obtain realistic lineshapes (15).

...with the value obtained above, and with T_2, which can be estimated from EPR measurements. We note that the symmetries within the dimer (e.g., uncompensated electronic spins, or selective nuclear spin labeling), thereby facilitating readout of the state of the system.
Mars-Like Soils in the Atacama Desert, Chile, and the Dry Limit of Microbial Life

Rafael Navarro-González,1,2* Fred A. Rainey,3 Paola Molina,1 Danielle R. Bagaley, Becky J. Hollen, José de la Rosa,1 Alanna M. Small,3 Richard C. Quinn,4,5 Frank J. Grunthaner,6 Luis Cáceres,7 Benito Gomez-Silva,8 Christopher P. McKay5

The Viking missions showed the martian soil to be lifeless and depleted in organic material and indicated the presence of one or more reactive oxidants. Here we report the presence of Mars-like soils in the extreme arid region of the Atacama Desert. Samples from this region had organic species only at trace levels and extremely low levels of culturable bacteria. Two samples from the extreme arid region were tested for DNA and none was recovered. Incubation experiments, patterned after the Viking labeled-release experiment but with separate biological and nonbiological isomers, show active decomposition of organic species in these soils by nonbiological processes.

The second puzzling result is that organic material in the labeled-release (LR) experiment was consumed as expected if life were present (+) (supporting online text). However, the presence of life is in apparent contradiction with the results from pyr-GC-MS. Currently, the most widely accepted explanation for the reactivity of the martian soil is the presence of one or more inorganic oxidants (such as superoxides, peroxides, or peroxynitrites) at the parts-per-million (ppm) level, whereas the lack of organics can be explained by their oxidation because of the presence of such oxidants and/or by direct ultraviolet radiation damage (5) (supporting online text).

We report here results of studies on the soils in the Atacama Desert, an environment that serves as a model for Mars. The Atacama is an extreme, arid, temperate desert that extends from 20°S to 30°S along the Pacific coast of South America (6–9) (supporting online text). Soil samples were collected along the precipitation gradient in a north-to-south transect centered on ~70°W between 24°S and 28°S (Fig. 1). They were analyzed (10) for organic material by pyr-GC-MS at 750°C under an inert atmosphere and for the presence of viable heterotrophic microorganisms by serial dilution plating on a number of artificial culture media that contained high and low nutrient levels. The diversity of the bacterial communities in a number of the samples was investigated by isolation of the total DNA, then polymerase chain reaction (PCR) amplification and sequence determination of the 16S ribosomal RNA (rRNA) genes recovered.

Analysis of samples by pyr-GC-MS revealed that the most arid zone of the Atacama, the Yungay area, is depleted of most organic molecules. Only two peaks in the chromatograms corresponding to organic molecules (formic acid and benzene) are detectable (figs. S1 and S2). In contrast, a less arid site, AT01-22, releases a complex mixture of organic compounds on pyrolysis (fig. S2). We carried out a comparative analysis by pyr-GC-MS with major classes of biomolecules (proteins, carbohydrates, fatty acids, porphyrins, and DNA) and bacterial mass (e.g., strain AT01-3 isolated from the Atacama Desert) (supporting online text). We concluded that site AT01-22 contains bacteria and/or all of the major classes of biomolecules at levels within the detection limits of the pyr-GC-MS protocol applied.

The two characteristic compounds released by all pyrolysates are formic acid, a highly oxidized organic compound, and benzene, a thermally stable aromatic compound. These two compounds are typically released by the thermal treatment of monocarboxylic acids, polycarboxylic acids, carbohydrates, polysaccharides, amino acids, and proteins. Formic acid is present at concentrations of ~1 μmol g⁻¹ in the Yungay area, then decreases by an order of magnitude at 268°C and increases again in the less arid zone (Fig. 2C). In contrast, benzene is present at trace levels (~0.01 μmol g⁻¹) at ~248°C, with its concentration increasing to ~1 μmol g⁻¹ in the less arid zone (~288°C). The ratio between formic acid and benzene reaches its highest value (~12 units) in the Yungay area, and then sharply drops to ~0.3 from 258°C to 288°C (Fig. 2D). A high formic acid/benzene ratio indicates that the organic matter present in the region is oxidized and possibly composed of refractory organisms such as aliphatic and aromatic mono- and polycarboxylic acids.